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Poetic Abstract

Ein Fürst und doch keines Fürsten Sohn,
Gesetze der Erdmutter waren der Lohn
Für den, der vermaÿ das Land, das Trigon.

Gebrannt und gehängt, geschleudert, geschlagen,
So hören wir täglich ihr Rufen und Klagen,
doch keiner der Frommen wird sich erbarmen.1

Die zwei nun ergeben das Höchste von vielen,
beweisen sie nur genug eigenen Willen.
Dies woll'n wir bei Paaren im Spiegel erzielen.

1Second verse freely adapted from by Bentzien [12], page 34.
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Abstract

The aim of this thesis is the investigation of the asymptotic behaviour of empirical
U -quantiles under dependence. U -quantiles are a generalization of order statistcs and
are applicated in robust statistics. Examples are the Hodges-Lehmann estimator of
location or the Qn estimator of scale. Furthermore, we want to study generalized
linear statistics, which are linear combinations of U -quantiles. An important tool for
the analysis of the asymptotic distribution of quantiles is the Bahadur representa-
tion, which gives a relation to the empirical distribution function. U -quantiles can be
approximated by the empirical U -distribution function in this way. For this reason,
we will develop some new results for U -statistics under di�erent mixing assumptions.
We will give pointwise and functional central limit theorems, laws of the iterated
logarithm and strong invariance principles for U -quantiles.

Ziel dieser Arbeit ist es, das asymptotische Verhalten von empirischen U -Quantilen
unter Abhängigkeit zu analysieren. U -Quantile sind eine Verallgemeinerung von
Ordnungsstatistiken und haben Anwendung in der robusten Statistik, so z. B. der
Hodges-Lehmann-Schätzer für die Lage einer Verteilung oder der Qn Skalenschätzer.
Weiterhin wollen wir auch verallgemeinerte lineare Statistiken untersuchen, also Lin-
earkombinationen von U -Quantilen. Ein wichtiges Hilfsmittel für die Analyse der
asymptotischen Verteilung von Quantilen ist die Bahadur-Darstellung, mit der ein
Zusammenhang zur empirischen Verteilungsfunktion hergestellt wird. U -Quantile
lassen sich auf diese Weise durch die empirische U -Verteilungsfunktion approximieren.
Aus diesem Grund werden wir auch einige neue Resultate für U -Statistiken unter ver-
schiedenen Mischungsbedingungen entwickeln. Wir werden sowohl punktweise also
auch funktionale Versionen des zentralen Grenzwertsatzes, des Gesetzes des iterierten
Logarithmus und des starken Invarianzprinzips für U -Quantile beweisen.
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Preface

During the period from May 2008 until June 2011, I worked on the topic of empirical
U -quantiles, hoping that the results of my research will be interesting for statisticians
as well as for probabilists. I also hope that I have found a balanced approach between
theory and applicaton. Empirical U -quantiles have application in robust statistics,
i.e. the analysis of data that might be contaminated by extreme outliers. We ex-
tend di�erent classic theorems of probability theory to U -statistics and U -quantiles
of dependent data. Our technical conditions include series from mathematics like
continued fraction as well as from application like GARCH models used for �nancial
data.

This thesis is based on a series of four papers: Dehling and Wendler [32], [33] on U -
statistics, and Wendler [93], [94] on U -quantiles. However, instead of simply glueing
these four articles together, we restructured the material, adjusted the notation and
improved the technical details in di�erent places.

After an introduction, the second chapter will be a short summary of concepts of
measuring dependence and properties of random variables that are weak dependent
in the sense of strong mixing or absolute regularity. Chapter 3 and 4 will give an
introduction to U -statistics, U -quantiles are dealt with in Chapter 5 and 6. First, we
will investigate the pointwise asymptotic behaviour and then the functional limit the-
orems. The four main Chapters 3 to 6 are divided in three sections each: De�nitions
and examples in the �rst part, technical lemmas in the second and main results in
the third. I tried to give the reader all the necessary information to understand the
ideas and the technical method used without boring him with an excessive repetition
of well-known facts.

This research would not have been possible without the support of numerous peo-
ple. I want to express my deepest gratitude to Herold Dehling, who proposed this
interesting topic to me, discussed it with me many times and gave me advice when-
ever I needed it. I learned a lot from him during the time I wrote my diploma thesis
and my PhD-thesis.

I am thankful to Thomas Kott, Aeneas Rooch, Daniel Vogel, Ting Zhang and
anonymous referees who read my papers carefully and helped me to improve them
with their critical comments. I owe thanks to Julia Tullius who helped me reduce my
mistakes concerning English grammar and spelling. I am very grateful that Wei Biao
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Preface

Wu gave me the opportunity to visit him at the University of Chicago for half a year.
I appreciate the �nancial aid of the German Academic Foundation (Studienstiftung
des deutschen Volkes) and the collaborative research center on dynamical structures
(SFB 823 Dynamische Strukturen) of the German Research Foundation (DFG).
Last, but not least, I want to thank Bettina and Detlef Wendler from all my heart

for being such good parents. Thank you for your encouragement and support during
my studies.
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1 Introduction

1.1 Robust Estimation

Let us start with a classic statistical problem. Assume that (Xn)n∈N is a sequence
of independent random variables with a N(µ, σ2) distribution, which is a standard
normal distribution shifted by the location parameter µ and stretched by the scale
parameter σ. As the normal distribution has all moments, we have that µ = EXi is
the expectation and σ2 = VarXi is the variance of the random variables. The task is
to �nd good estimators µ̂n = µ̂(X1, . . . , Xn) for the location and σ̂2

n = σ̂2(X1, . . . , Xn)

for the variance of Xi. Good estimators should have a low bias and a low variance.
The classic solution to this problem are the sample mean µ̂n = X̄n = 1

n

∑n
i=1Xi

and the sample variance σ̂2
n = 1

n−1
∑n

i=1

(
Xi − X̄

)2
. There are many justi�cations

for this estimation procedure, one is the theory of U -statistics introduced by Halmos
[45] and Hoe�ding [49]. U -statistics are generalized means. To estimate a parameter
θ which can be expressed as θ = E[g(Xi, Xj)] for a symmetric measurable function,
the U -statistic

Un(g) =
2

n(n− 1)

∑
1≤i<j≤n

g(Xi, Xj)

is (under independence) an unbiased estimator, as indicated by the U in its name.
If we investigate the model of independently distributed random variables with an
arbitrary density, then Un(g) is even the uniformly minimum variance unbiased esti-
mator.
In this thesis, we will deal with stationary sequences (Xn)n∈N of random variables

that do not behave as nicely; instead of independence, we will allow di�erent forms
of short range dependence including examples such as linear processes of the form
Xn =

∑∞
i=1 aiZn−i, GARCH processes, which are used to model volatility clustering

in �nancial data, and observations from dynamical systems, where Xn+1 = T (Xn) for
an expanding map T . If moments high enough exist (more than second moments for
the sample mean, more than fourth moments for the sample variance), we can still
use U -statistics. They might not be unbiased, but the bias will vanish asymptotically.
The analysis of the asymptotic behaviour will be much more complicated than in the
independent case and will be discussed in Chapter 3.
An important object to characterize dynamical systems with Xn+1 = T (Xn) is the
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1 Introduction

correlation integral

C(r) = P (‖(Xn+1, Xn)− (Yn+1, Yn)‖ ≤ r)

where (Yn)n∈N is a independent copy of (Xn)n∈N. This can be stimated by the empir-
ical U -distribution function, which is a family of U -statistics indexed by r ∈ R (which
also could be described as a U -statistc with values in a function space). Chapter 4 is
about the empirical U -distribution function.

In addition to dependence, we do not assume that the random variables are nor-
mally distributed, the distribution might have much heavier tails, second moments
might not exists. Then the sample variance is not a consistent estimator for the scale,
as it will not converge. An alternative to estimators based on means or generalized
means (U -statistics) are estimators based on empirical quantiles or generalized em-
pirical quantiles (U -quantiles). Let X(1) ≤ X(2) ≤ . . . X(n) be the order statistic, i.e.
the ordered sample X1, . . . , Xn. Then the empirical p-quantile is de�ned as X(dpne)

and the p-U -quantile as the p-quantile of the sample (g(Xi, Xj))1≤i<j≤n.

Some robust estimators of location that can deal better with heavy tailed data

are the median X(d0.5ne), the trimmed mean X̄0.25 := 2
n

∑ 3
4
n

i= 1
4
n
X(i), which is a linear

statistic (a linear combination of quantiles), or the Hodges-Lehmann estimator, which
is the 0.5-U -quantile for the kernel function g(x, y) = 1

2
(x+y). To estimate the scale,

one could use the inter quartile distance Tn = X(d0.75e) −X(d0.25e), the Qn estimator,
which is the 0.25-U -quantile for the kernel function g(x, y) = |x−y| or the winsorized
variance, which is the mean of the values of (Xi − Xj)

2, where the biggest 25% are
replaced by the 0.75-U -quantile for the kernel function g(x, y) = (x − y)2. This is a
generalized linear statistic. The asymptotic behaviour of these types of statistics will
be investigated in Chapters 5 and 6.

1.2 Four Steps of Linearization

The best studied object in probability theory is the partial sum
∑n

i=1Xi for indepen-
dent and identically distributed random variables. The U -quantiles and generalized
linear statistics we investigate in this thesis are more complicated objects, so we will
try to approximate them by such partial sums of independent random variables to
investigate their asymptotic behaviour. This will be done in four steps:

Bahadur [11] showed that quantiles are close to the empirical distribution function
Fn(t) =

∑n
i=1 1{Xi≤t}. The idea is that the empirical quantile will converge to the

inverse F−1(p) of the distribution function F . The quantile can be expressed as the
generalized inverse F−1n (p) of empirical distribution function. So if Fn is close to F ,
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1.3 Main Limit Theorems of this Thesis

there is hope that the slope of Fn is close to the slope of F , which would lead to

Fn(F−1(p))− p
F−1(p)− F−1n (p)

≈ f(F−1(p)).

This relation can indeed be used to derive the asymptotic behaviour of quantiles
and has been generalized to U -quantiles by Geertsema [42] (but only for independent
random variables). We will establish a generalized Bahadur representation under
dependence in Theorem 5.3.1 and Theorem 6.3.1.
For U -quantiles, the Bahadur representation gives a relation to the empirical U -

distribution function, which is still not a simple partial sum of random variables.
Hoe�ding [49] found a way to decompose U -statistics into a partial sum and a so-called
degenerate part, which is a U -statistic with uncorrelated summands. For dependent
data, the summands of the degenerate part might be correlated, but the correlation
can be bounded with the help of generalized covariance inequalities, a method �rst
used by Yoshihara [98]. We will investigate the rate of almost sure convergence for
the degenerate part in Proposition 3.3.2 and Proposition 4.2.3.
The �rst two steps (Bahadur representation and Hoe�ding decomposition) lead to

a partial sum, but as we do not assume that the random variables are independent,
there is still a way to go. In this thesis, we will consider sequences (Xn)n∈N that
are near epoch dependent on an underlying process (Zn)n∈N. Near epoch dependence
roughly means that the random variables are close to a function of �nitely many of the
underlying random variables, Xn ≈ h(Zn−l, . . . , Zn+l). If (Zn)n∈N is short range de-
pendent (for example in the sense of absolute regularity), then (h(Zn−l, . . . , Zn+l))n∈N
is also short range dependent.
So the last step is to show that the partial sum of short range dependent random

variables have the same behaviour as the ones of independent random variables. Two
techniques are useful: blocking and coupling. If big blocks are seperated by small
blocks, the depedence vanishes as the size of the small blocks increases. Furthermore,
absolute regular observation can be replaced by a independent ones by coupling meth-
ods, such that the replacement di�ers from the original random variables only with a
small probability. More details about near epoch dependence and short range depen-
dence in the sense of strong mixing or absolute regularity can be found in Chapter
2.

1.3 Main Limit Theorems of this Thesis

With the four steps described above, we can approximate U -quantiles of dependent
data by a partial sum of independent data. What asymptotic behaviour can be
expected for such an object? Note that the sample mean X̄n is a consistent estimator
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1 Introduction

for the mean, that means 1
n

∑n
i=1(Xi−EXi) converges to zero for independent random

variables. But there are di�erent types of convergence in probability theory: The weak
law of large numbers gives convergence in probability, the strong law of large numbers
almost sure convergence (which implies convergence in probability).
The question arises what other norming sequences than 1

n
we could use and still

get convergence. It turns out that the answer is di�erent for the two types of conver-
gence. For convergence in probability, the borderline case is the norming sequence 1√

n
:

1√
n

∑n
i=1(Xi − EXi) does not converge to 0 in probability, but weakly to a normal

distribution. This was �rst proved by de Moivre for Bernoulli distributed random
variables [34]. We will show that this holds for U -statistics of dependent data in
Theorem 3.3.1 and for U -quantiles in Corollary 5.3.3.
For the almost sure convergence, the interesting borderline case with a nontrivial

limit behaviour is the norming sequence 1√
n log logn

. We obtain the following asymp-
totic behaviour:

lim sup
n→∞

±

√
1

2 Var[X1]n log log n

n∑
i=1

(Xi − EXi) = 1

almost surely. This law of the iterated logarithm was originally established for partial
sums of independent and bounded random variables by Khintchine in 1927 [61] and
has been extended to dependent random variables by many authors. We will give a
version for U -statistics of dependent data in Theorem 3.3.3 and for U -quantiles in
Corollary 5.3.4.
As we want to investigate not only single U -quantiles, but also generalized lin-

ear statistics, we are interested in functional limit theorems. The empirical process
( 1√

n

∑n
i=1(1{Xi≤t}− P (Xi ≤ t)))t∈[0,1] converges weakly to a Brownian Bridge, as was

proved by Donsker [36], we will give a functional central limit theorem for the empiri-
cal U -process in Corollary 4.3.2 and for the empirical U -quantile process in Corollary
6.3.3. To prove this, we will establish an almost sure invariance principle for the em-
pirical U -process in Theorem 4.3.1, i.e. an almost sure approximation by a Gaussian
process, similar to the invariance principle Kiefer [60] gave for the empirical process.
Theorem 6.3.2 says that a strong invariance principle also holds for the empirical
U -quantile process.
The functional law of the iterated logarithm established by Finkelstein [41] says

that (( 1√
2n log logn

∑n
i=1(1{Xi≤t} − P (Xi ≤ t)))t∈[0,1])n∈N is almost surely a relatively

compact sequence of functions. As functional laws of the iterated logarithm hold for
Gaussian sequences, we will conclude that the functional law of the iterated logarithm
is valid for the empirical U -process (Corollary 4.3.3) and for the empirical U -quantile
process (Corollary 6.3.4).
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2 Short Range Dependent Data

2.1 Measuring Dependence

Many classic results in probability theory like the central limit theorem or the law
of the iterated logarithm start with the assumption that (Xn)n∈N is a sequence of
independent and identically distributed random variables. In this thesis, we want
to avoid the condition of independence, but still assume that (Xn)n∈N is stationary.
If the dependence is too strong, we cannot expect a similar limit behaviour. For
example, if Xn = X1, then X̄ = 1

n

∑n
i=1Xi = X1 and the law of large numbers

fails. There are di�erent methods to measure dependence and to de�ne short range
dependence. For independent random variables Xn, Xm and all measurable sets A,
B, we have P (Xn ∈ A,Xm ∈ B)− P (A)P (B) = 0. For dependent random variables,
this equality will not hold for all sets A, B. There are a bunch of so-called mixing
assumption (like strong mixing introduced by Rosenblatt [78], absolute regularity,
uniform mixing) which say that the this di�erence converges to 0 as |n − m| → ∞
(uniformly for all sets A and B in some sense).
On the other hand, under independence we have Cov(f(Xn), g(Xm)) = 0 for all

functions f and g for which this covariance exists. Doukhan and Louhichi [39]
established a concept of weak dependence taking the maximum of the covariance
Cov(f(Xn), g(Xm)) for f and g in some class of test functions. Many of the well-
known mixing coe�cients can be rewritten as bounds for such covariances. A third
concept of measuring dependence uses the fact that many processes can be repre-
sented as functionals of underlying sequences of random variables, for example linear
processes or GARCH processes. If the underlying sequence (ξn)n∈N is independent
and Xn = f(ξn−l, . . . , ξn+l) is a function of a �nite part of the underlying sequence,
then the process (Xn)n∈N is m-dependent. More general, if the sequence (ξn)n∈N is
short range dependent and Xn can be approximated by a function of a �nite part of
the underlying sequence, then (Xn)n∈N is short range dependent. Such processes Xn

are called approximating functionals of (ξn)n∈N or near epoch dependent on (ξn)n∈N.
In this thesis, we will concentrate on the �rst concept (mixing) and on the third

concept (near epoch dependence) and the combination of them. Let us now introduce
the strong mixing coe�cient:
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2 Short Range Dependent Data

De�nition 2.1.1. 1. Let A,B ⊂ F be two σ-�elds on the probability space
(Ω,F , P ). Then the strong mixing coe�cient of A and B is given by

α(A,B) = sup {|P (A ∩B)− P (A)P (B)| : A ∈ A, B ∈ B} .

2. Let (Xn)n∈N be a stationary process. Then the strong mixing coe�cients of
(Xn) are given by

α(k) = sup
n∈N

α
(
Fn1 ,F∞n+k

)
,

where F la is the σ-�eld generated by random variables Xa, . . . , Xl, and (Xn)n∈N
is called strongly mixing if α(k)→ 0 as k →∞.

Strong mixing in the sense of α-mixing is the weakest of the well-known strong
mixing conditions (see Bradley [20] and Doukhan [38] for details about all mixing
conditions) and it is a very common assumption and covers some examples, like
linear processes if some regularity condition on the density of the innovations hold, as
described in Withers [95]. If the innovations have a discrete distribution, the strong
mixing assumption might not hold, see Andrews [2]. Strong mixing also excludes
data from expanding dynamical systems with Xn+1 = T (Xn) for a piecewise smooth
and expanding map T : [0, 1]→ [0, 1]:

Example 2.1.2. Let (Zn)n∈N be independent r.v.'s with P [Zn = 1] = P [Zn = 0] = 1
2

and

Xn =
∞∑
k=n

1

2k−n+1
Zk.

Then Xn+1 = 2Xn [mod 1] and (Xn)n∈N is not strong mixing, as∣∣∣∣∣∣P
X1 ∈

2(k−1)⋃
i=1

[
(2i− 2)2−k, (2i− 1)2−k

]
, Xk ∈

[
0,

1

2

]
−P

X1 ∈
2(k−1)⋃
i=1

[
(2i− 2)2−k, (2i− 1)2−k

]P [Xk ∈
[
0,

1

2

]]∣∣∣∣∣∣ =
1

2
− 1

2
· 1

2
=

1

4
.

For this reason, we will study sequences which are near epoch dependent on ab-
solutely regular processes. Absolute regularity was introduced by Volkonskii and
Rozanov [91], [92].

De�nition 2.1.3. 1. Let A,B ⊂ F be two σ-�elds on the probability space
(Ω,F , P ). The absolute regularity coe�cient of A and B is given by

β(A,B) = E sup
A∈A
|P (A|B)− P (A)| .

18



2.1 Measuring Dependence

2. Let (Xn)n∈N be a stationary process. Then the absolute regularity coe�cients
of (Xn)n∈N are given by

β(k) = sup
n∈N

β
(
Fn1 ,F∞n+k

)
,

and (Xn)n∈N is called absolutely regular, if β(k)→ 0 as k →∞.

For all A ∈ Fn1 , B ∈ F∞n+k, we have that

|P (A∩B)−P (A)P (B)| ≤ 1

2
(|P (A ∩B)− P (A)P (B)|+ |P (A ∩Bc)− P (A)P (Bc)|)

=
1

2
(|P (A|B)− P (A)|P (B) + |P (A|Bc)− P (A)|P (Bc))

=
1

2
E|P (A|σ({B}))− P (A)| ≤ 1

2
E sup

A∈Fn−∞
|P (A|σ({B}))− P (A)| ≤ 1

2
β(k)

so that α(k) ≤ 1
2
β(k) (absolute regularity implies strong mixing). But we will not

study absolutely regular sequences themself, but near epoch dependent functionals:

De�nition 2.1.4. Let ((Xn, Zn))n∈Z be a stationary process. We say that (Xn)n∈N
is L1 near epoch dependent on the process (Zn)n∈Z with approximation constants
(al)l∈N, if

E
∣∣X1 − E(X1|Gl−l)

∣∣ ≤ al l = 0, 1, 2 . . .

where liml→∞ al = 0 and Gl−l is the σ-�eld generated by Z−l, . . . , Zl.

Near epoch dependent processes are often called approximating functionals, for
example in Borovkova et al [18]. In the literature one often �nds L2 near epoch
dependence (where the L1 norm in the de�nition is replaced by the L2 norm), but
this requires second moments and we are interested in robust estimation. So we
want to allow heavier tails and consider L1 near epoch dependence. Furthermore, we
do not require that the underlying process is independent, it only has to be weakly
dependent in the sense of absolute regularity. ARMA and GARCH processes are
near epoch dependent, see Hansen [46]. GARCH processes play an important role
in �nancial mathematics, they are used to model volatility clustering in �nancial
data. The simplest GARCH model is the following: Let (ξn)n∈N be a sequence of
independent standard normal random variables and Xn = σnξn, where (σn)n∈N is a
random sequence with σ2

n = α0 + α1X
2
n−1 + α2σ

2
n−1.

Linear process are near epoch dependent, regardless if the innovations have a den-
sity or not. However, for later application, we will need the random variables (Xn)n∈N
to have a density and it is not clear that this holds for discrete innovations. But in
many examples, the density exists. Solomyak [87] proved that if (Zn)n∈N are indepen-
dent identically distributed and take the values 1,−1, then for almost all λ ∈ (1

2
, 1),

the distribution of
∑∞

n=1 λ
nZn has a density.
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2 Short Range Dependent Data

This class of near epoch dependent sequences also covers data from dynamical
systems, which are deterministic except for the initial value and not covered by strong
mixing or near epoch dependence on an independent sequence. Let T : [0, 1]→ [0, 1]

be a piecewise smooth and expanding map such that infx∈[0,1] |T ′ (x)| > 1. Then there
is a stationary process (Xn)n∈N such that Xn+1 = T (Xn) which can be represented
as a functional of an absolutely regular process, for details see Hofbauer and Keller
[52]. The map T (x) = 1

x
− b 1

x
c is related to the continued fraction

Xn = f
(
(Zn+k)k∈N

)
=

1

Zn + 1
Zn+1+

1
Zn+2+...

where (Zn)n∈N is a stationary, absolutely regular process (even uniformly mixing,
see Billingsley [16], p. 50) taking values in N if the distribution of X0 is the Gauss
measure given by the density f (x) = 1

log 2
1

1+x
(Note that this map T is not uniformly

expanding).
The conditional expectation E(X1|Gl−l) is not easy to deal with. Borovkova et

al. [18] gave the following characterization of near epoch dependence: By our as-
sumption, Xn = E(Xn|G∞−∞) almost surely, so we can write Xn = f((Zn+k)k∈Z).

Lemma 2.1.5. [Borovkova et al. [18]] Let (Zn)n∈Z be a stationary process and Xn =

f((Zn+k)k∈Z).

1. Let (Xn)n∈N be near epoch dependent on (Zn)n∈Z with approximation constants

(an)n∈N and (Z ′n)n∈Z be a copy of (Zn)n∈Z such that Z−l = Z ′−l, Z−l+1 =

Z ′−l+1, . . . , Zl = Z ′l , then for X ′n = f((Z ′n+k)k∈N)

E|X0 −X ′0| ≤ 2al.

2. If for all copies of (Zn)n∈Z with Z−l = Z ′−l, Z−l+1 = Z ′−l+1, . . . , Zl = Z ′l we

have E|X0 −X ′0| ≤ al, then (Xn)n∈N is near epoch dependent on (Zn)n∈Z with

approximation constants (an)n∈N.

In our proofs, we will investigate not the near epoch dependent process (Xn)n∈N
itself, but some function (g(Xn))n∈N. For general g, it is not clear that the near epoch
dependence holds for this transformed process, we will need an additional continuity
condition to guarantee near epoch dependence.

De�nition 2.1.6. Let (Xn)n∈Z be a stationary process. A function g : R → R

satis�es the variation condition (with respect to the distribution of X1), if there is a
constant L such that

E

[
sup

‖x−X0‖≤ε
|g (x)− g (X0)|

]
≤ Lε.
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2.1 Measuring Dependence

This condition was introduced by Denker and Keller [35] and is slightly di�erent
from the continuity condition used by Borovkova et al. [18]. Note that the variation
of g might hold for one distribution, but not for a di�erent one. Now we can give
conditions for the near epoch dependence of (g(Xn))n∈N similar to Proposition 2.11
of Borovkova et al. [18]:

Lemma 2.1.7. Let (Xn)n∈N be L1 near epoch dependent on the process (Zn)n∈Z with

approximation constants (al)l∈N and g satisfy the variation condition with constant

L.

1. If E|g(X1)|1+δ <∞, then (g(Xn))n∈N is near epoch dependent on (Zn)n∈Z with

approximation constants

a′l = (L+ 2
1+2δ
1+δ ‖g(X1)‖1+δ)a

δ
1+2δ

l .

2. If g(X1) is bounded, then (g(Xn))n∈N is near epoch dependent on (Zn)n∈Z with

approximation constants

a′l = (L+ 4‖g(X1)‖∞)a
1
2
l .

Proof. 1. Let (Z ′n)n∈Z be a copy of (Zn)n∈Z as in Lemma 2.1.5, then E|X0−X ′0| ≤ 2al

and by the Markov inequality P (|X0 − X ′0| > a
δ

1+2δ

l ) ≤ 2a
1+δ
1+2δ

l . So by the variation
condition and by the Hölder inequality

E|g(X0)− g(X ′0)|
=E|g(X0)− g(X ′0)|1{|X0−X′0|≤a

δ
1+2δ }

+ E|g(X0)− g(X ′0)|1{|X0−X′0|>a
δ

1+2δ }

≤La
δ

1+2δ + 2‖g(X1)‖1+δ(P (|X0 −X ′0| > a
δ

1+2δ ))
δ

1+δ

≤(L+ 2
1+2δ
1+δ ‖g(X1)‖1+δ)a

δ
1+2δ

l

and the statement follows with Lemma 2.1.5.

2. With X ′0 as above, we have by the Markov inequality P (|X0−X ′0| >
√
al) ≤ 2

√
al.

So by the variation condition

E|g(X0)− g(X ′0)|
=E|g(X0)− g(X ′0)|1{|X0−X′0|≤

√
al} + E|g(X0)− g(X ′0)|1{|X0−X′0|>

√
al}

≤L
√
al + 2‖g(X1)‖∞(P (|X0 −X ′0| >

√
al))

≤(L+ 4‖g(X1)‖∞)a
1
2
l

and the statement follows with Lemma 2.1.5.
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2 Short Range Dependent Data

2.2 Covariance Inequalities

An important tool in the analysis of weakly dependent random variables are covari-
ance inequalities. We can write α(n) = sup |E [Y1Y2]− E [Y1]E [Y2]|, where Y1 and Y2
random variables such that Y1 is measurable with respect to Fk1 and Y2 with respect
to F∞k+n and take only the values 0 and 1. For more general random variables, we
have

Lemma 2.2.1. [Davydov [25]] Let be Y1 and Y2 random variables such that Y1 is

measurable with respect to Fk1 and Y2 with respect to F∞k+n for some k ∈ N, then

|E [Y1Y2]− E [Y1]E [Y2]| ≤ 10 ‖Y1‖p1 ‖Y2‖p2 α
1
p3 (n)

for all p1, p2, p3 ∈ [1,∞] with 1
p1

+ 1
p2

+ 1
p3

= 1.

In this inequality, the case pi =∞ is included and should be understood as 1
∞ = 0.

For a stationary and strongly mixing sequence (Xn)n∈N, this inequality is useful to
�nd bounds for the variance. Assume that ‖X1‖2+δ < ∞ and

∑∞
k=0 α

δ
2+δ (k) < ∞,

then

Var[X̄] = Var[
1

n

n∑
i=1

Xi] =
1

n2

n∑
i,j=1

Cov[Xi, Xj]

=
1

n2
2
n−1∑
k=1

(n− k) Cov[X0, Xk] +
1

n
Var[X1] ≤

2

n

n−1∑
k=0

α
δ

2+δ (k)‖X1‖22+δ.

By dominated convergence, one obtains

Var[
√
nX̄]

n→∞−−−→ VarX1 + 2
n−1∑
k=1

Cov[X0, Xk].

For treating stochastic processes, fourth moment bounds are a common tool. As a
immediate consequence of Lemma 2.2.1 we have the following inequality, which will
help us with higher moments:

Lemma 2.2.2. Let (Xn)n∈Z be a stationary strongly mixing sequence of random vari-

ables, then for i ≤ j ≤ k ≤ l

|E [XiXjXkXl]− E [Xi]E [XjXkXl]| ≤ 10 ‖Xi‖p1 ‖XjXkXl‖p2 α
1
p3 (j − i)

and

|E [XiXjXkXl]− E [XiXj]E [XkXl]| ≤ 10 ‖XiXj‖p1 ‖XkXl‖p2 α
1
p3 (k − j)

for all p1, p2, p3 ∈ [1,∞] with 1
p1

+ 1
p2

+ 1
p3

= 1.
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2.2 Covariance Inequalities

With easy calculations or as a special case of Theorem 2 of Yokoyama [97], a fourth
moment inequality follows

Lemma 2.2.3. [Yokoyama [97]] Let (Xn)n∈N be a strongly mixing and bounded se-

quence with
∑∞

k=1 kα(k) <∞, then there exists a constant C such that

E

(
n∑
i=1

Xi

)4

≤ Cn2.

For near epoch dependent sequences, Borovkova et al. [18] proved similar covariance
inequalities and derived moment bounds:

Lemma 2.2.4. [Borovkova et al. [18]] Let (Xn)n∈Z be a near epoch dependent se-

quence with approximation constants (al)l∈N on an absolutely regular process (Zn)n∈Z
and ‖X0‖2+δ <∞ for some δ ∈ (0,∞]. Then

|E [XiXi+k]− (EXi) (EXi+k)| ≤ 2 ‖X0‖22+δ
(
β

(
bk

3
c
)) δ

2+δ

+ 4 ‖X0‖
2+δ
1+δ

2+δ a
δ

1+δ

b k
3
c .

Lemma 2.2.5. [Borovkova et al. [18]] Let (Xn)n∈Z be a bounded near epoch depen-

dent sequence with approximation constants (al)l∈N on an absolutely regular process

(Zn)n∈Z. Then

|E [XiXjXkXl]− E [Xi]E [XjXkXl]|

≤

(
6 ‖X0‖22+δ

(
β

(
bj − i

3
c
)) δ

2+δ

+ 8 ‖X0‖
2+δ
1+δ

2+δ a
δ

1+δ

b j−i
3
c

)
‖X0‖2∞

and

|E [XiXjXkXl]− E [XiXj]E [XkXl]|

≤

(
6 ‖X0‖22+δ

(
β

(
bk − j

3
c
)) δ

2+δ

+ 8 ‖X0‖
2+δ
1+δ

2+δ a
δ

1+δ

b k−j
3
c

)
‖X0‖2∞ .

Lemma 2.2.6. [Borovkova et al. [18]] Let (Xn)n∈Z be a bounded near epoch depen-

dent sequence with approximation constants (al)l∈N on an absolutely regular process

(Zn)n∈Z. Assume that
∑∞

k=1 k
2(ak + β(k)) <∞, then

E

(
n∑
i=1

Xi

)4

≤ Cn2.
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2 Short Range Dependent Data

2.3 Coupling

A very powerful tool for proving limit theorems for dependent data are coupling tech-
niques, especially if one deals with nonlinear functionals (where usual covariances are
not enough). The idea is to replace the dependent random variabls by independent
random variables with the smallest error possible. Berkes and Philipp [14] and [15]
introduced this kind of approximation by independent random variables. The mixing
assumption of absolute regularity is very suitable for establishing such an approxi-
mation, as Berbee [13] noticed.

Lemma 2.3.1. [Berbee [13]] Let Y be a random variable taking values in Rd and

A ⊂ F a σ-�eld. Suppose that on the probability space (Ω,F , P ) there exist a random

variable U which is uniformly distributed on [0, 1] and independent of the σ-�eld

generated by Y and A. Then there exist a random variable Y ′ such that

1. the random variables Y and Y ′ have the same distribution,

2. Y ′ is independent of the σ-�eld A,

3. P (Y 6= Y ′) = β(σ(Y ),A).

We will only give a brief sketch of the proof, following the arguments of Bryc
[21]. Suppose that Y has a �nite support t1, . . . , tn and the σ-�eld A is generated
by a random variable X. One can construct a random variable Y ′ with the same
distribution as Y and

P [Y = Y ′ = ti|X] = min {P [Y = ti|X] , P [Y = ti]}
P [Y ′ = ti|X] = P [Y = ti] .

Then Y ′ is independent of X and

P [Y 6= Y ′|X] = 1−
n∑
i=1

P [Y = Y ′ = ti|X]

= 1−
n∑
i=1

min {P [Y = ti|X] , P [Y = ti]}

=
n∑
i=1

(P [Y = ti]−min {P [Y = ti|X] , P [Y = ti]})

=
∑

i: P [Y=ti]>P [Y=ti|X]

(P [Y = ti]− P [Y = ti|X])

= sup
A⊂{t1,...,tn}

|P [Y ∈ A]− P [Y ∈ A|X]|
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2.3 Coupling

and by iterated expectation

P [Y 6= Y ′] = E [P [Y 6= Y ′|X]]

= E

[
sup

A⊂{t1,...,tn}
|P [Y ∈ A]− P [Y ∈ A|X]|

]
= β (X, Y ) .

For the proof the general Theorem, one has to approximate random variables by
discrete ones. Such a coupling is impossible under strong mixing, as can be seen
e.g. from the results of Dehling [27]. Bradley [19], however, was able to establish
a weaker type of coupling for strongly mixing random variables, using the fact that
absolute regularity coe�cient and the strong mixing coe�cient are equivalent for
random variables taking their values in a �nite set and approximating general random
variables by such discrete ones. We will use a later version of this coupling by Rio
[77]:

Lemma 2.3.2. [Rio [77]] Let Y be a bounded, real-valued random variable and A ⊂ F
a σ-�eld. Suppose that on the probability space (Ω,F , P ) there exist a random variable

U which is uniformly distributed on [0, 1] and independent of the σ-�eld generated by

Y and A. Then there exist a random variable Y ′ such that

1. the random variables Y and Y ′ have the same distribution,

2. Y ′ is independent of the σ-�eld A,

3. E|Y − Y ′| ≤ 4‖Y ‖∞α(σ(Y ),A).

Unlike Berbee's theorem for absolute regularity, this lemma under strong mixing
does not give equality with high probability, Y and Y ′ are only close in L1 distance.
This will force us to impose additional continuity conditions on a kernel g when we
investigate U -statistics later. If the random variables are not bounded, we will need
the following coupling lemma:

Lemma 2.3.3. Let Y be a real-valued random variable with E|Y |ρ for a ρ > 0 and

A ⊂ F a σ-�eld. Suppose that on the probability space (Ω,F , P ) there exist two

independent random variables U1, U2 which are uniformly distributed on [0, 1] and

independent of the σ-�eld generated by Y and A. Then there exist a random variable

Y ′ such that for every ε > 0

1. the random variables Y and Y ′ have the same distribution,

2. Y ′ is independent of the σ-�eld A,

3. P (|Y − Y ′| ≥ ε) ≤ 6
‖Y ‖

ρ
1+ρ
ρ α

ρ
1+ρ (σ(Y ),A)

ε
ρ

1+ρ
.
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2 Short Range Dependent Data

Proof. Let B = ‖Y ‖
ρ

1+ρ
ρ ε

1
1+ρα−

1
1+ρ (σ(Y ),A) and YB = Y 1|Y |≤B. Then there is a

Y ′B independent of A with the same distribution as YB such that E|YB − Y ′B| ≤
4Bα(σ(YB),A) ≤ 4Bα(σ(Y ),A) and by the Markov inequality P (|YB − Y ′B| ≥ ε) ≤
4Bα(σ(Y ),A)

ε
. Furthermore, there exists a random variable Y ′′ with the same distribu-

tion as Y − YB, independent of Y , Y ′B and A. We set

Y ′ =

{
Y ′B if Y ′B 6= 0

Y ′′ if Y ′B = 0
,

so that Y ′′ = Y ′ − Y ′B and Y ′ is independent of A. Then

P (|Y − Y ′| ≥ ε) ≤ P (|YB − Y ′B| ≥ ε) + P (|Y | > B) + P (|Y ′| > B)

≤ 4
Bα(σ(Y ),A)

ε
+ 2
‖Y ‖ρρ
Bρ

= 6
‖Y ‖

ρ
1+ρ
ρ α

ρ
1+ρ (σ(Y ),A)

ε
ρ

1+ρ

.

Such coupling results exists also for near epoch dependent sequences, developed by
Borovkova et al. [18], using the approximation of near epoch dependent sequences by
functions of a �nite part of the underlying process and the coupling under absolute
regularity.

Lemma 2.3.4. [Borovkova et al. [18]] Let (Xn)n∈N be a near epoch dependent se-

quence with approximation constants (ak)k∈N on an absolutely regular process (Zn)n∈Z
with mixing coe�cients (β(k))k∈N. Given an integer m, there exist random sequences

(X ′n)n∈N, (X ′′n)n∈N, such that

1. (X ′n)n∈N, (X ′′n)n∈N have the same distribution as (Xn)n∈N,

2. (X ′n)n∈N is independent of (X ′′n)n∈N,

3. P
[∑∞

i=m |Xi −X ′i| > Abm
3
c

]
≤ Abm

3
c + β

(
bm

3
c
)
,

4. P
[∑∞

i=0

∣∣X ′−i −X ′′−i∣∣ > Abm
3
c

]
≤ Abm

3
c,

where

Al :=

√√√√2
∞∑
n=l

an.
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3 U-Statistics

3.1 De�nition and Applications

U -statistics are a class of nonlinear statistics and can be described as generalized
means and were introduced independently in the second half of the 1940s by Halmos
[45] and Hoe�ding [49]. Van Mises [68] investigated the similar statistics named after
him. Many sample statistics can be written as a U -statistic, at least asymptotically,
e.g. the sample variance or the Cramer-von Mises-statistic. For an overview on U -
staistics, we recommend the book of Koroljuk and Borovsikich [62]. For simplicity of
notation, we concentrate on the case of bivariate U -statistics.

De�nition 3.1.1. Let g : R2 → R be a measurable and symmetric function.

Un (g) =
2

n (n− 1)

∑
1≤i<j≤n

g (Xi, Xj) .

is called U -statistic with kernel g.

If (Xn)n∈N is a sequence of independently identically distributed random vari-
ables, Un(g) is an unbiased estimator for θ := E[g(X1, X2)]. If we investigate the
model of independently distributed random variables with an arbitrary density, then
Un(g) is a uniformly minimum variance unbiased estimator. In this case, the order
statistics X(1), . . . , X(n) (the ordered sample with X(1) ≤ X(2) ≤ . . . ≤ X(n) and
{X(1), . . . , X(n)} = {X1, . . . , Xn}) is su�cient and complete. Hence the expection

Un(g) = E[g(X1, X2)|X(1), . . . , X(n)]

conditionalized on the order statistic has uniformly the lowest variance.
Let us now give some examples:

Example 3.1.2 (Sample Mean). Let g (x, y) = 1
2

(x+ y). Then θ = EX1 and the
related U -statistic is the sample mean:

Un(g) =
1

n (n− 1)

∑
1≤i<j≤n

(Xi +Xj) =
1

n

n∑
i=1

Xi =: X̄.
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3 U -Statistics

Example 3.1.3 (Sample Variance). Let g (x, y) = 1
2

(x− y)2. It follows that

θ =
1

2
E
[
X2

1 − 2X1X2 +X2
2

]
=

1

2

(
Var [X1] + E2 [X1] + Var [X2] + E2 [X2]− 2E [X1]E [X2]

)
= Var [X1] .

The related U -statistic is then the well-known sample variance:

Un (g) =
1

n (n− 1)

∑
1≤i<j≤n

(Xi −Xj)
2 =

1

n (n− 1)

n∑
i=1

n∑
j=1

(Xi −Xj)
2

=
1

n− 1

(
n∑
i=1

X2
i − X̄

n∑
i=1

Xi

)
=

1

n− 1

n∑
i=1

(
Xi − X̄

)2
.

Example 3.1.4 (Gini's mean di�erence). Let g (x, y) = |x− y| . Then the corre-
sponding U -statistic is

Un (g) =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj| ,

known as Gini's mean di�erence, which is an estimator of scale which does not require
second moments.

Example 3.1.5 (Cramer-von Mises-statistic). Let

g (x, y) =

∫ 1

0

(
1{x≤t} − t

) (
1{y≤t} − t

)
dt.

This leads to the following U -statistic:

Un (g) =
1

n (n− 1)

(
n∑
i=1

n∑
j=1

∫ 1

0

(
1{Xi≤t} − t

) (
1{Xj≤t} − t

)
dt−

n∑
i=1

g (Xi, Xi)

)

=
n

n− 1

∫ 1

0

(
F̂n (t)− t

)2
dt− 1

n (n− 1)

n∑
i=1

g (Xi, Xi)

:=
n

n− 1
Vn −

1

n (n− 1)

n∑
i=1

g (Xi, Xi) .

Vn is called Cramer-von Mises-statistic and can be used for testing the hypothesis
that Xn has a uniform distribution on [0, 1] as an alternative to the Kolmogorow-
Smirno�-statistic Kn := supt∈[0,1] |F̂n (t)− t| (also called discrepancy).
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3.1 De�nition and Applications

Example 3.1.6 (χ2 goodness of �t test). Let (Xn)n∈N be a stationary process such
that X1 can take only the values t1, . . . , tk. Furthermore, let be p1, . . . , pk > 0 with∑n

i=1 pi = 1 and

g (x, y) =
k∑
i=1

1

pi

(
1{x=ti} − pi

) (
1{y=ti} − pi

)
.

The related U -statistic is

Un (g) =
1

n(n− 1)

k∑
l=1

 1

pl

(
n∑
i=1

(
1{Xi=tl} − pl

))2

− 1

pl

n∑
i=1

(
1{Xi=tl} − pl

)2
=

1

n− 1
χ2 − 1

n(n− 1)

k∑
l=1

1

pl

n∑
i=1

(
1{Xi=tl} − pl

)2
.

χ2 is used for testing the hypothesis that P [X1 = tl] = pi for l = 1, . . . , k.

The limit behaviour of partial sums is well understood for indepenedent data as
well as for many types of dependent sequences. As U -statistics have a more complex
structure, the key tool in the investigation of U -statistics is their approximation by
a linear part, the so-called Hoe�ding-decomposition [49]:

De�nition 3.1.7. We can write

Un (g) = θ +
2

n

n∑
i=1

g1 (Xi) +
2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj)

where

θ := Eg(X, Y )

g1(x) := g(x, Y )− θ
g2(x, y) := g(x, y)− g1(x)− g1(y)− θ

for some independent copies of X, Y of X1. 2
n

∑n
i=1 g1 (Xi) is called linear part and

Un(g2) = 2
n(n−1)

∑
1≤i<j≤n g2 (Xi, Xj) degenerate part of the U -statistic Un (g).

It might be surprising that this decomposition is helpful, because we have to deal
with the degenerate part Un(g2), which is a U -statistic itself. But it has the special
degeneracy property: For independent data, we have that

E [g2 (X1, X2) |X2] = E [g (X1, X2)− θ − g1 (X1)− g1 (X2)|X2]

= E [g (X1, X2) |X2]− θ − E [g1 (X1)]− g1 (X2)

= g1 (X2)− E [g1 (X1)]− g1 (X2) = −E [g1 (X1)] = 0.
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3 U -Statistics

It follows that the summands of Un(g2) are uncorrelated, as for three di�erent indices
i, j, k

E [g2 (Xi, Xj) g2 (Xj, Xk)] = E [E [g2 (Xi, Xj) g2 (Xj, Xk) |Xj, Xk]]

= E [E [g2 (Xi, Xj) |Xj] g2 (Xj, Xk)]

= 0 = E [g2 (Xi, Xj)]E [g2 (Xj, Xk)] .

So we have that Var[Un(g2)] = 4
n2(n−12)

∑
1≤i<j≤n Var g(Xi, Xj) = O(n−2). Unfortu-

nately, the summands of the degenerate part Un(g2) can be correlated for dependent
data. Yoshihara [98] established generalized covariance inequalities under absolutely
regularity and concluded that the variance of Un(g2) is still decreasing fast enough.
Such inequalities can be proved with the help of coupling techniques, where depen-
dent random variables are replaced by independent ones. The independent random
variables are close to the original ones with high probablity. As we want to con-
clude that the values of the kernel g2 are not changed much, we have to introduce a
continuity property, proposed by Denker and Keller [35]:

De�nition 3.1.8. A kernel g satis�es the variation condition if there exists constant
L and ε0 > 0, such that for all ε ∈ (0, ε0)

E

[
sup

‖(x,y)−(X,Y )‖≤ε
|g (x, y)− g (X, Y )|

]
≤ Lε,

where X, Y are independent with the same distribution as X1 and ‖·‖ denotes the
Euclidean norm.

This condition could be described as Lipschitz-continuity in mean. To investigate
quantiles, we will have to deal with indicator functions in Chapters 4 to 6, but we
will see that the variation condition also holds in these cases. Let us now have a look
at the examples above:

Example 3.1.9 (Sample Mean). The kernel g (x, y) = 1
2

(x+ y) satis�es the variation
condition as it is Lipschitz-continuous.

Example 3.1.10 (Sample Variance). Let g (x, y) = 1
2

(x− y)2. Then

E sup
‖(x,y)−(X,Y )‖≤ε

|g (x, y)− g (X, Y )|

=E sup
‖(x,y)−(X,Y )‖≤ε

|((x− y)− (X − Y ))((x− y) + (X − Y ))|

=E sup
‖(x,y)−(X,Y )‖≤ε

|((x−X) + (y − Y ))(x+X − y − Y )| ≤ ε (4E|X|+ 2ε) ,

so the variation condition holds as long as X1 has �nite �rst moment, which is a mild
assumption for a variance estimator.

30
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Example 3.1.11 (Gini's mean di�erence). The kernel g (x, y) = |x− y| is Lipschitz-
continuous, therefore it satis�es the variation condition.

Example 3.1.12 (Cramer-von Mises-statistic). Let

g (x, y) =

∫ 1

0

(
1{x≤t} − t

) (
1{y≤t} − t

)
dt.

Then

sup
‖(x,y)−(X,Y )‖≤ε

|g (x, y)− g (X, Y )|

≤ sup
‖(x,y)−(X,Y )‖≤ε

∣∣∣∣∫ 1

0

(1{x≤t} − 1{X≤t})1{y≤t}dt
∣∣∣∣

+ sup
‖(x,y)−(X,Y )‖≤ε

∣∣∣∣∫ 1

0

1{X≤t}(1{y≤t} − 1{Y≤t})dt
∣∣∣∣

≤ sup
‖(x,y)−(X,Y )‖≤ε

∫ 1

0

|1{x≤t} − 1{X≤t}|dt+ sup
‖(x,y)−(X,Y )‖≤ε

∫ 1

0

|1{y≤t} − 1{Y≤t}|dt

≤ sup
‖(x,y)−(X,Y )‖

|x−X|+ sup
‖(x,y)−(X,Y )‖

|y − Y | = 2ε,

so the variation condition holds.

Example 3.1.13 (χ2 goodness of �t test). Let (Xn)n∈N be a stationary process such
that X1 can take only the values t1, . . . , tk. Furthermore, let be p1, . . . , pk > 0 with∑n

i=1 pi = 1 and

g (x, y) =
k∑
i=1

1

pi

(
1{x=ti} − pi

) (
1{y=ti} − pi

)
.

If ε < min
{
|ti − tj|

∣∣i, j ∈ 1 . . . , k
}
, then

sup
‖(x,y)−(X,Y )‖≤ε

|g (x, y)− g (X, Y )| = 0,

so the variation condition holds.

We will need the variation conditions for the function g1 of the linear part and of
the kernel g2 of the degenerate part. As this two functions are unknown in many
applications, we check the variation condition for g and then use the following:

Lemma 3.1.14. Let the variation condition hold for a kernel g.

1. The variation condition also holds for g1.
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2. The variation condition also holds for g2.

Proof. 1. Recall that g1 (x) = E [g (x,X1)]− θ, so

E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε
|g1 (x)− g1 (x′)|

]

=E

[
sup

|x−X|≤ε, |x′−X|≤ε
|E [g (x, Y )]− E [g (x′, Y )]|

]

≤E

[
sup

|x−X|≤ε, |x′−X|≤ε
E |g (x, Y )− g (x′, Y )|

]

≤E

[
sup

|x−X|≤ε, |x′−X|≤ε
|g (x, Y )− g (x′, Y )|

]

≤E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε
|g (x, y)− g (x′, y′)|

]
≤ Lε.

2. The set of kernels satisfying the variation condition is obviously a vector space.
As g2 (x, y) = g (x, y)− g1 (x)− g1 (y)− θ, the condition follows directly from part 1.
of this lemma.

3.2 Generalized Covariance and Moment

Inequalities

To show in the dependent case that the degenerate part of a U -statistic is negligible,
we need bounds for the covariance. To establish covariance inequalities, we can use
coupling techniques. Assume that g is a bounded kernel (then g2 is also bounded by
some constant C) and that (Xn)n∈N is an absolutely regular process. For i ≤ j ≤
k ≤ l, choose with Lemma 2.3.1 a random variable X ′i with the same distribution as
Xi, independent of Xj, Xk, Xl, such that P (Xi 6= X ′i) ≤ β(j − i). Then

E [g2 (X ′i, Xj) g2 (Xk, Xl)] = E [E [g2 (X ′i, Xj) g2 (Xk, Xl) |Xj, Xk, Xl]]

= E [E [g2 (X ′i, Xj) |Xj] g2 (Xk, Xl)]

= 0 = E [g2 (X ′i, Xj)]E [g2 (Xk, Xl)]

as the distribution of X ′i does not change conditionalized on Xi, Xj, Xk. Additionally,
we have

|E [g2 (X ′i, Xj) g2 (Xk, Xl)]− E [g2 (Xi, Xj) g2 (Xk, Xl)]|
≤ 2CP (Xi 6= X?

i ) = 2Cβ(j − i)
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3.2 Generalized Covariance and Moment Inequalities

and arrive at

|E [g2 (X ′i, Xj) g2 (Xk, Xl)]| ≤ 2CP (Xi 6= X?
i ) = 2Cβ(j − i).

If the kernel g is not bounded, we need some restriction on the moments. For inde-
pendent data, second moments of the kernel are required, but in the dependent case,
one needs slightly more:

De�nition 3.2.1. Let (Xn)n∈N be a stationary process. A kernel g has uniform
(2 + δ)-moments if for all k ∈ N0

E |g (X1, Xk)|2+δ ≤M,

E |g (X, Y )|2+δ ≤M,

where X, Y are independent copies of X1.

If g has uniform (2 + δ)-moments, then

E|g1(X1)|2+δ = E|E[g(X, Y )|Y ]− Eg(X, Y )|2+δ ≤ 22+δM

and as g2 is de�ned as g2(x, y) = g(x, y)−g1(x)−g2(y)−θ, also the degenerate kernel
g2 has uniform (2 + δ)-moments. Now by the arguments above and some trimming
method, we arrive at the the following lemma:

Lemma 3.2.2. [Yoshihara [98]] Assume that (Xn)n∈N is an absolutely regular process.

Let m = max
{
i(2) − i(1), i(4) − i(3)

}
, where {i1, i2, i3, i4} =

{
i(1), i(2), i(3), i(4)

}
and

i(1) ≤ i(2) ≤ i(3) ≤ i(4).

1. If g is a bounded kernel, then there is a constant C such that

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ Cβ(m).

2. If g is a kernel with uniform (2 + δ)-moments for a δ > 0, then there is a

constant C such that

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ Cβ
δ

2+δ (m) .

Using the coupling technique for strongly mixing data, we can prove similar in-
equalities:

Lemma 3.2.3. Assume that (Xn)n∈N is a strongly mixing sequence with E|X1|ρ <
∞ for a ρ > 0 and that the kernel g satis�es the variation condition. Let m =

max
{
i(2) − i(1), i(4) − i(3)

}
, where {i1, i2, i3, i4} =

{
i(1), i(2), i(3), i(4)

}
and i(1) ≤ i(2) ≤

i(3) ≤ i(4).
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1. If g is a bounded kernel, then there is a constant C such that

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ Cα
ρ

2ρ+1 (m).

2. If g is a kernel with uniform (2 + δ)-moments for a δ > 0, then there is a

constant C such that

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ Cα
ρδ

2ρδ+δ+3ρ+2 (m).

Proof. 1. For simplicity, we consider only the case i1 < i2 < i3 < i4 and i2−i1 ≥ i4−i3.
After enlarging the probability space if necessary, we can assume that there exists a
random variable with an uniform distribution on [0, 1] and independent of (Xn)n∈N.
With Lemma 2.3.3, choose a random variable X ′i1 independent of Xi2 , Xi3 , Xi4 with
the same distribution as Xi1 and

P
[∣∣Xi1 −X ′i1

∣∣ ≥ ε
]
≤ 6
‖X1‖

ρ
1+ρ
ρ α

ρ
1+ρ (m)

ε
ρ

1+ρ

.

As g2 is a degenerate kernel, we have

E
[
g2
(
X ′i1 , Xi2

)
g2 (Xi3 , Xi4)

]
= E

[
E
[
g2
(
X ′i1 , Xi2

)
g2 (Xi3 , Xi4) |Xi2 , Xi3 , Xi4

]]
= E

[
E
[
g2
(
X ′i1 , Xi2

)
|Xi2

]
g2 (Xi3 , Xi4)

]
= 0.

If g2 is bounded by M and satis�es the variation condition with constant L (which
holds by our assumptions and Lemma 3.1.14), then by the variation condition for
every ε

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]|
=
∣∣E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]− E

[
g2
(
X ′i1 , Xi2

)
g2 (Xi3 , Xi4)

]∣∣
=
∣∣E [(g2 (Xi1 , Xi2)− g2

(
X ′i1 , Xi2

)
)g2 (Xi3 , Xi4)

]∣∣
≤M

(∣∣∣E [(g2 (Xi1 , Xi2)− g2
(
X ′i1 , Xi2

)
)1{|Xi1−X′i1 |≥ε}

]∣∣∣
+
∣∣∣E [(g2 (Xi1 , Xi2)− g2

(
X ′i1 , Xi2

)
)1{|Xi1−X′i1 |<ε}

]∣∣∣)
≤2M2P

[∣∣Xi1 −X ′i1
∣∣ ≥ ε

]
+ LεM = 12M2‖X1‖

ρ
1+ρ
ρ α

ρ
1+ρ (m)

ε
ρ

1+ρ

+ LεM.

Setting ε = ‖X1‖
ρ

2ρ+1
ρ α (m)

ρ
2ρ+1 , we arrive at

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ (12M2 + LM) ‖X1‖
ρ

2ρ+1
ρ α

ρ
2ρ+1 (m).
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2. Let ε > 0, K > 0 and de�ne:

g2,K (x, y) =


g2 (x, y) if |g2 (x, y)| ≤

√
K√

K if g2 (x, y) >
√
K

−
√
K if g2 (x, y) < −

√
K

Obviously, g2,K satis�es the variation condition with the same constant L as g2.
Let X ′i1 be a random variable as above independent of Xi2 , Xi3 , Xi4 with

P
[∣∣Xi1 −X ′i1

∣∣ ≥ ε
]
≤ 6
‖X1‖

ρ
1+ρ
ρ α

ρ
1+ρ (m)

ε
ρ

1+ρ

.

As g2 is a degenerate kernel, we have

E
[
g2
(
X ′i1 , Xi2

)
g2 (Xi3 , Xi4)

]
= 0.

Therefore, we get:

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]|
=
∣∣E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]− E

[
g2
(
X ′i1 , Xi2

)
g2 (Xi3 , Xi4)

]∣∣
=
∣∣E [(g2 (Xi1 , Xi2)− g2

(
X ′i1 , Xi2

))
g2 (Xi3 , Xi4)

]∣∣
≤E

[∣∣(g2,K (Xi1 , Xi2)− g2,K
(
X ′i1 , Xi2

))
g2,K (Xi3 , Xi4)

∣∣1{|Xi1−X′i1 |≤ε}]
+ E

[∣∣(g2,K (Xi1 , Xi2)− g2,K
(
X ′i1 , Xi2

))
g2,K (Xi3 , Xi4)

∣∣1{|Xi1−X′i1|>ε}]
+ E [|g2,K (Xi1 , Xi2) g2,K (Xi3 , Xi4)− g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)|]
+ E

[∣∣g2,K (X ′i1 , Xi2

)
g2,K (Xi3 , Xi4)− g2

(
X ′i1 , Xi2

)
g2 (Xi3 , Xi4)

∣∣] .
Because of the variation condition and |g2,K (X3, X4)| ≤

√
K, the �rst summand is

smaller than Lε
√
K. In consequence of Lemma 2.3.1, the second term is bounded by

P
[∣∣Xi1 −X ′i1

∣∣ ≥ ε
]

2K ≤ 12
‖X1‖

ρ
1+ρ
ρ α

ρ
1+ρ (m)

ε
ρ

1+ρ

K.

Let the (2 + δ)-moments of g2 be uniformly bounded by M . For the third summand,
we get:

E [|g2,K (Xi1 , Xi2) g2,K (Xi3 , Xi4)− g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)|]

≤ E
[(
|g2 (Xi1 , Xi2)| −

√
K
)
|g2 (Xi3 , Xi4)|1{|g2(Xi1 ,Xi2)|>

√
K,|g2(Xi3 ,Xi4)|≤

√
K}
]

+ E
[
|g2 (Xi1 , Xi2)|

(
|g2 (Xi3 , Xi4)| −

√
K
)
1{|g2(Xi1 ,Xi2)|≤

√
K,|g2(Xi3 ,Xi4)|>

√
K}
]

+ E
[∣∣∣(|g2 (Xi1 , Xi2)| −

√
K
)(
|g2 (Xi3 , Xi4)| −

√
K
)∣∣∣

1{|g2(Xi1 ,Xi2)|>
√
K,|g2(Xi3 ,Xi4)|>

√
K}
]
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≤ E
[(
|g2 (Xi1 , Xi2)| −

√
K
)√

K1{|g2(Xi1 ,Xi2)|>
√
K}
]

+ E
[(
|g2 (Xi3 , Xi4)| −

√
K
)√

K1{|g2(Xi3 ,Xi4)|>
√
K}
]

+
1

2
E

[(
|g2 (Xi1 , Xi2)| −

√
K
)2
1{|g2(Xi1 ,Xi2)|>

√
K}

]
+

1

2
E

[(
|g2 (Xi3 , Xi4)| −

√
K
)2
1{|g2(Xi3 ,Xi4)|>

√
K}

]
≤ 1

2
E
[
g22 (Xi1 , Xi2)1{|g2(Xi1 ,Xi2)|>

√
K}
]

+
1

2
E
[
g22 (Xi3 , Xi4)1{|g2(Xi3 ,Xi4)|>

√
K}
]

≤ 1

2

E |g2 (Xi1 , Xi2)|
2+δ

K
δ
2

+
1

2

E |g2 (Xi3 , Xi4)|
2+δ

K
δ
2

≤ M

K
δ
2

.

After treating the fourth summand in the same way, we totally get:

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]|

≤ Lε
√
K + 12

‖X1‖
ρ

1+ρ
ρ α

ρ
1+ρ (m)

ε
ρ

1+ρ

K + 2
M

K
δ
2

=: f (ε,K) .

Setting ε0 = ‖X1‖
ρ

2ρ+1
ρ α (m)

ρ
2ρ+1 K

ρ+1
4ρ+2 , we obtain:

f
(
ε0, K

)
= (L+ 12) ‖X1‖

ρ
2ρ+1
ρ α(m)

ρ
2ρ+1K

3ρ+2
4ρ+2 + 2

M

K
δ
2

.

With K0 = ‖X1‖
− 2ρ

2ρδ+δ+3ρ+2
ρ α (m)−

2ρ
2ρδ+δ+3ρ+2 , we get the bound:

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]|

≤ f
(
ε0, K0

)
= (L+ 12 + 2M)‖X1‖

ρδ
2ρδ+δ+3ρ+2
ρ α

ρδ
2ρδ+δ+3ρ+2 (m).

The next lemma is very similar to the generalized covariance inequality given by
Borovkova et al. [18], but with a di�erent continuity condition.

Lemma 3.2.4. Let (Xn)n∈N be near epoch dependent on an absolutely regular process

(Zn) with constants al. De�ne AL =
√

2
∑∞

i=L ai and β (j) as the mixing coe�cient

of (Zn). Let g satisfy the variation condition.

1. If g is bounded, then there exists a constant C, such that

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ Cβ
(
bm

3
c
)

+ CAbm
3
c.
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2. If g has uniform (2 + δ)-moments, then there exists a constant C, such that

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ Cβ
δ

2+δ

(
bm

3
c
)

+ CA
δ

2+δ

bm
3
c.

Proof. 1. For simplicity, we consider only the case 0 = i1 < i2 < i3 < i4 and
m = i2− i1 ≥ i4− i3. With Lemma 2.3.4, there exist sequences (X ′n)n∈Z and (X ′′n)n∈Z
with the same distribution as (Xn)n∈Z, such that

1. (X ′′n)n∈Z is independent of (Xn)n∈Z,

2. P
[∑∞

i=m |Xi −X ′i| > Abm
3
c

]
≤ Abm

3
c + β

(
bm

3
c
)
,

3. P
[∑∞

i=0

∣∣X ′−i −X ′′−i∣∣ > Abm
3
c

]
≤ Abm

3
c.

By the degeneracy of g2, we have that g2
(
X ′′i1 , Xi2

)
g2 (Xi3 , Xi4) = 0 and by construc-

tion

E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)] = E
[
g2
(
X ′i1 , X

′
i2

)
g2
(
X ′i3 , X

′
i4

)]
.

With the triangular inequality it follows that

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]|
=
∣∣E [g2 (X ′i1 , X ′i2) g2 (X ′i3 , X ′i4)]− E [g2 (X ′′i1 , Xi2

)
g2 (Xi3 , Xi4)

]∣∣
≤
∣∣E [g2 (X ′i1 , X ′i2) g2 (X ′i3 , X ′i4)− g2 (X ′′i1 , Xi2

)
g2
(
X ′i3 , X

′
i4

)]∣∣
+
∣∣E [g2 (X ′′i1 , Xi2

)
g2
(
X ′i3 , X

′
i4

)
− g2

(
X ′′i1 , Xi2

)
g2 (Xi3 , Xi4)

]∣∣ .
In order to keep this proof short, we treat only the �rst summand. As g is bounded
and satis�es the variation condition, g2 is bounded by some M and the variation
condition holds with constant L, then by the variation condition and the coupling as
in Lemma 2.3.4∣∣E [(g2 (X ′i1 , X ′i2)− g2 (X ′′i1 , Xi2

))
g2
(
X ′i3 , X

′
i4

)]∣∣
≤M

(∣∣∣E [(g2 (X ′′i1 , Xi2

)
− g2

(
X ′i1 , X

′
i2

)
)1{|X′′i1−X

′
i1
|≤Abm3 c,|Xi2−X

′
i2
|≤Abm3 c}

]∣∣∣
+
∣∣∣E [(g2 (Xi1 , Xi2)− g2

(
X ′i1 , Xi2

)
)1{|X′′i1−X

′
i1
|≤Abm3 c,|Xi2−X

′
i2
|≤Abm3 c}

C

]∣∣∣)
≤2M2P

[∣∣Xi1 −X ′′i1
∣∣ ≥ Abm

3
c

]
+ 2M2P

[∣∣Xi2 −X ′i2
∣∣ ≥ Abm

3
c

]
+ L
√

2Abm
3
cM

≤(4M2 +
√

2LM)
(
β
(
bm

3
c
)

+ Abm
3
c

)
.
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2. As above, choose sequences (X ′n)n∈Z and (X ′′n)n∈Z, such that (X ′′n)n∈Z is indepen-
dent of (Xn)n∈Z with

P

[
∞∑
i=m

|Xi −X ′i| > Abm
3
c

]
≤ Abm

3
c + β

(
bm

3
c
)

P

[
∞∑
i=0

∣∣X ′−i −X ′′−i∣∣ > Abm
3
c

]
≤ Abm

3
c.

Then

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]|
≤
∣∣E [g2 (X ′i1 , X ′i2) g2 (X ′i3 , X ′i4)− g2 (X ′′i1 , Xi2

)
g2
(
X ′i3 , X

′
i4

)]∣∣
+
∣∣E [g2 (X ′′i1 , Xi2

)
g2
(
X ′i3 , X

′
i4

)
− g2

(
X ′′i1 , Xi2

)
g2 (Xi3 , Xi4)

]∣∣ .
We will again concentrate on the �rst summand. As in the proof of Lemma 3.2.3,
part 2., de�ne

g2,K (x, y) =


g2 (x, y) if |g2 (x, y)| ≤

√
K√

K if g2 (x, y) >
√
K

−
√
K if g2 (x, y) < −

√
K

It is clear that g2,K satis�es the variation condition with the same constant L as g2
(which satis�es the variation condition because of Lemma 3.1.14). We get that∣∣E [g2 (X ′i1 , X ′i2) g2 (X ′i3 , X ′i4)− g2 (X ′′i1 , X ′i2) g2 (X ′i3 , X ′i4)]]

=
∣∣E [(g2 (X ′i1 , X ′i2)− g2 (X ′′i1 , X ′i2)) g2 (X ′i3 , X ′i4)]∣∣
≤E

[∣∣(g2,K (X ′i1 , X ′i2)− g2,K (X ′′i1 , X ′i2)) g2,K (X ′i3 , X ′i4)∣∣]
+ E

[∣∣g2,K (X ′i1 , X ′i2) g2,K (X ′i3 , X ′i4)− g2 (X ′i1 , X ′i2) g2 (X ′i3 , X ′i4)∣∣]
+ E

[∣∣g2,K (X ′′i1 , X ′i2) g2,K (X ′i3 , X ′i4)− g2 (X ′′i1 , X ′i2) g2 (X ′i3 , X ′i4)∣∣] .
As in the proof of the �rst part of this lemma, we have for the �rst summand:∣∣E [(g2 (X ′i1 , X ′i2)− g2 (X ′′i1 , X ′i2)) g2 (X ′i3 , X ′i4)]∣∣

≤(4K +
√

2L
√
K)
(
β
(
bm

3
c
)

+ Abm
3
c

)
.

As g2
(
X ′i1 , X

′
i2

)
g2
(
X ′i3 , X

′
i4

)
and g2

(
X ′′i1 , X

′
i2

)
g2
(
X ′i3 , X

′
i4

)
are random variables with

(1 + δ
2
)-moments smaller than M from the de�nition of the uniform (2 + δ)-moments,

the second and the third summand are bounded by M

K
δ
2
. Totally, we get∣∣E [g2 (X ′i1 , X ′i2) g2 (X ′i3 , X ′i4)− g2 (X ′′i1 , X ′i2) g2 (X ′i3 , X ′i4)]∣∣

≤ (4K +
√

2L
√
K)
(
β
(
bm

3
c
)

+ Abm
3
c

)
+ 2

M

K
δ
2

.
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Setting K =
(
Ab k

3
c + β

(
bk
3
c
))− 2

2+δ
M

2
2+δ , keeping in mind that K is non-decreasing

and treating the summand in the same way, one easily obtains

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ CM
2

2+δ

(
β

δ
2+δ

(
bm

3
c
)

+ A
δ

2+δ

bm
3
c

)
for a constant C, which proves the lemma.

Now we can derive a second moment inequality for the degenerate part of a U -
statistic, following the arguments of Yoshihara [98]. In the optimal case τ = 0 (the
series in the lemma are summable), the order of the variance is n2, which is the same
as in the independent case.

Lemma 3.2.5. Let g be a kernel that satis�es the variation condition. Let be τ ≥ 0

such that one of the following conditions hold for the process (Xn)n∈N:

1. g is bounded, (Xn)n∈N is strongly mixing, E |X1|ρ < ∞ for a ρ > 0 and∑n
k=0 kα

ρ
2ρ+1 (k) = O (nτ ).

2. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is strongly mixing,

E |X1|ρ <∞ for a ρ > 0 and
∑n

k=0 kα
ρδ

2ρδ+δ+3ρ+2 (k) = O (nτ ).

3. g is bounded, (Xn)n∈N is near epoch dependent with approximation constants

(ak)k∈N on an absolutely regular process with mixing coe�cients (β(k))k∈N and∑n
k=0 k(β (k) + Ak) = O (nτ ) for AL =

√
2
∑∞

i=L ai.

4. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is near epoch depen-

dent with approximation constants (ak)k∈N on an absolutely regular process

with mixing coe�cients (β(k))k∈N and
∑n

k=0 k(β
δ

2+δ (k) + A
δ

2+δ

k ) = O (nτ ) for

AL =
√

2
∑∞

i=L ai.

Then
n∑

i1,i2,i3,i4=1

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4 )]| = O
(
n2+τ

)
.

Proof. The proofs of the four parts of this lemmas are exactly the same, using the
di�erents parts of Lemma 3.2.3 respectively Lemma 3.2.4, so we will show only part
1. Let {i1, i2, i3, i4} =

{
i(1), i(2), i(3), i(4)

}
and i(1) ≤ i(2) ≤ i(3) ≤ i(4), then we can
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3 U -Statistics

rewrite the sum in the statement of our lemma as

n∑
i1,i2,i3,i4=1

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4 )]|

=
n∑
k=0

∑
i1,i2,i3,i4

max{i(2)−i(1),i(4)−i(3)}=k

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4 )]|

≤ C

n∑
k=0

∑
i1,i2,i3,i4

max{i(2)−i(1),i(4)−i(3)}=k

α
ρ

2ρ+1 (k).

We have to calculate the number of quadrubles (i1, i2, i3, i4) such that max{i(2) −
i(1), i(4) − i(3)} = k. First note that there are at most 6 quadrubles wich lead to
the same ordered numbers i(1), i(2), i(3), i(4). There are at most n2 possibilities to
choose i(1) and i(4). If i(2) − i(1) = max{i(2) − i(1), i(4) − i(3)} = k, then i(2) is already
�xed and there are k possibilities i(3). The same argument applies if i(4) − i(3) =

max{i(2) − i(1), i(4) − i(3)} = k, so we arrive at

n∑
i1,i2,i3,i4=1

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4 )]| ≤ Cn2

n∑
k=0

kα
ρ

2ρ+1 (k) = O
(
n2+τ

)
.

3.3 Central Limit Theorem and Law of the Iterated

Logarithm

We are now prepared to give versions of the classic limit theorems in probability
theory for U -statistics under dependence: the central limit theorem and the law of
the iterated logarithm. Similar results can be found in Dehling, Wendler [32], [33].
The proofs will all make use of the Hoe�ding decomposition

Un (g) = θ +
2

n

n∑
i=1

g1 (Xi) +
2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj) .

There already exist di�erent results for the linear part and the moment inequalities
of the previous section will allow us to show that the degenerate part will converge
to 0. After the central limit theorem under independence by Hoe�ding [49], there
are many results under dependence: Under the strong assumption of m-dependence
or ?-mixing, Sen [80], [82] proved asymptotic normality. Yoshihara [98] assumed
(Xn)n∈N to be stationary and absolutely regular and proved a central limit theorem
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3.3 Central Limit Theorem and Law of the Iterated Logarithm

for U -Statistics under this weaker condition. Denker and Keller [35] have relaxed
the mixing assumption to sequences which are near epoch dependent on absolutely
regular processes, Borovkova et al. [18] showed convergence of the empirical U -process
to a Gaussian process. Recently, Hsing and Wu [53] proved a central limit theorem for
weighted U -statistics of processes that are functionals of an underlying independent
i.i.d. process with some physical dependence measure (a more re�ned version of near
epoch dependence).

Theorem 3.3.1. Let (Xn)n∈N be a stationary process and g be a kernel that satis�es

the variation condition and let one of the following four conditions hold:

1. g is bounded, (Xn)n∈N is strongly mixing, E |X1|ρ <∞ for a ρ > 0 and α(k) =

O(k−α) for an α > 2ρ+1
ρ

.

2. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is strongly mixing,

E |X1|ρ <∞ for a ρ > 0 and α(k) = O(k−α) for an α > 2ρδ+δ+3ρ+2
ρδ

.

3. g is bounded, (Xn)n∈N is near epoch dependent with approximation constants

(ak)k∈N on an absolutely regular process with mixing coe�cients (β(k))k∈N and

there is a β > 1 such that β(k) = O(k−β) and ak = O(k−β−2).

4. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is near epoch dependent

with approximation constants (ak)k∈N on an absolutely regular process with mix-

ing coe�cients (β(k))k∈N and there is a β > 2+δ
δ

such that β(k) = O(k−β) and

ak = O(k−2β−1).

Then √
n (Un (g)− θ) D−→ N

(
0, 4σ2

)
with

σ2 = Var [g1 (X1)] + 2
∞∑
k=1

Cov [g1 (X1) g1 (X1+k)] .

If σ2 = 0, when the statement of the theorem should be read as convergence to 0.

Proof. We use the decomposition

√
n (Un (g)− θ) =

2√
n

n∑
i=1

g1 (Xi) +
√
n

2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj) .

For the four di�erent conditions of the theorem, we will proof that 2√
n

∑n
i=1 g1 (Xi)

is asymptotically normal, that σ2 <∞ and that the degenerate part

√
n

2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj)
n→∞−−−→ 0
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3 U -Statistics

in probability. The statement of the theorem will then follow with the help of Slutzky's
theorem.
1. First note that if (Xn)n∈N is strongly mixing, then the same holds for the se-
quence (g(Xn))n∈N and the mixing coe�cients are smaller or equal to the mix-
ing coe�cients (α(k))k∈N. So by Theorem 1.6 of Ibragimov [55], we have that
σ2 < ∞ and that 2√

n

∑n
i=1 g1 (Xi) is asymptotically normal. Moreover, we have∑n

k=0 kα
ρ

2ρ+1 (k) ≤
∑n

k=0 k
1−α ρ

2ρ+1 = O (nτ ) for a τ < 1 and by the triangular inequal-
ity and the �rst part of Lemma 3.2.5

Var

[
√
n

2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj)

]

≤ 1

n3

n∑
i1,i2,i3,i4=1

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4 )]| = O(
1

n3
n2+τ ) = o(1),

the Chebyshev inequality completes the proof.

2. With Theorem 1.7 of Ibragimov [55] σ2 < ∞ and 2√
n

∑n
i=1 g1 (Xi) is asymp-

totically normal. Moreover, we have
∑n

k=0 kα
ρδ

2ρδ+δ+3ρ+2 (k) = O (nτ ) for a τ < 1 and
by second part of Lemma 3.2.5

Var

[
√
n

2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj)

]
= O(

1

n3
n2+τ ) = o(1).

3. Note that g1(Xi) is bounded and that it is near epoch dependent with approxi-

mation constants a′l = a
1
2
l by Lemma 2.1.7. As

∑∞
k=1 β(k) < ∞ and

∑∞
k=1 a

′
k < ∞,

it follows by Thereom 2.3 of Ibragimov [55] that σ2 < ∞ and 2√
n

∑n
i=1 g1 (Xi) is

asymptotically normal. Moreover, we have AL = (2
∑∞

i=L ai)
1
2 = O(n−

β+1
2 ) and∑∞

k=0 k (β (k) + Ak) = O (nτ ) <∞ for a τ < 1, so by the third part of Lemma 3.2.5

Var

[
√
n

2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj)

]
= O(

1

n3
n2+τ ) = o(1).

4. g1(Xi) have �nite (2 + δ)-moments and are near epoch dependent with approxi-
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3.3 Central Limit Theorem and Law of the Iterated Logarithm

mation constants a′l = Ca
1+δ
3+2δ

l by Lemma 2.1.7. So we can conclude that

E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|
2+δ
1+δ

= E

[
|g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|

2+δ
1+δ 1

{|g1(X0)−E[g1(X0)|Z−l,...,Zl]|≤a
′− 1

1+δ
l }

]
+ E

[
|g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|

2+δ
1+δ 1

{|g1(X0)−E[g1(X0)|Z−l,...,Zl]|>a
′− 1

1+δ
l }

]
≤ a

′− 1
(1+δ)2

l E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|

+ a
′ δ(2+δ)
(1+δ)2

l E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|2+δ ≤ Ca
′ δ(2+δ)
(1+δ)2

l ≤ Ca
δ(2+δ)

(1+δ)(3+2δ)

l .

So we have that
∞∑
k=1

(
E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|

2+δ
1+δ

) 1+δ
2+δ ≤ C

∞∑
k=1

a
δ

3+2δ

l <∞,

as ak = O(n−2β−1) and 2β + 1 > 4+3δ
δ

> 3+2δ
δ
. Furthermore,

∑∞
k=1 β

δ
2+δ (k) < ∞,

so we can apply Theorem 2.2 of Ibragimov [55] to obtain asymptotic normality
of 2√

n

∑n
i=1 g1 (Xi) and σ2 < ∞. Moreover, Ak = (2

∑∞
i=k ai)

1
2 = O(k−β) , so∑n

k=0 k(β
δ

2+δ (k) + A
δ

2+δ

k ) = O (nτ ) for a τ < 1 and with the fourth part of Lemma
3.2.5

Var

[
√
n

2

n (n− 1)

∑
1≤i<j≤n

g2 (Xi, Xj)

]
= O(

1

n
) = O(

1

n3
n2+τ ) = o(1).

Part 2. of this theorem is similar to the central limit theorems for U -statistics in
Dehling and Wendler [32], but the continuity condition di�ers. The fourth part avoids
the condition of (4 + δ)-moments required in Borovkova et al. [18]. We are not only
interested in the weak convergence, but also in the strong behaviour of U -statistics.
Let us �rst investigate the degenerate part.

Proposition 3.3.2. Let (Xn)n∈N be a stationary process and g be a kernel that sat-

is�es the variation condition. Let be τ ≥ 0 such that one of the following conditions

holds:

1. g is bounded, (Xn)n∈N is strongly mixing, E |X1|ρ < ∞ for a ρ > 0 and∑n
k=0 kα

ρ
2ρ+1 (k) = O (nτ ).

2. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is strongly mixing,

E |X1|ρ <∞ for a ρ > 0 and
∑n

k=0 kα
ρδ

2ρδ+δ+3ρ+2 (k) = O (nτ ).
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3 U -Statistics

3. g is bounded, (Xn)n∈N is near epoch dependent with approximation constants

(ak)k∈N on an absolutely regular process with mixing coe�cients (β(k))k∈N. For

AL =
√

2
∑∞

i=L ai:
∑n

k=0 k (β (k) + Ak) = O (nτ ).

4. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is near epoch dependent

with approximation constants (ak)k∈N on an absolutely regular process with mix-

ing coe�cients (β(k))k∈N. For AL =
√

2
∑∞

i=L ai:
∑n

k=0 k(β
δ

2+δ (k) + A
δ

2+δ

k ) =

O (nτ ).

Then almost surely
n1− τ

2

log
3
2 n log log n

Un (g2)→ 0.

Proof. We de�ne

Qn =
∑

1≤i1<i2≤n

g2 (Xi1 , Xi2)

cn =
1

n1+ τ
2 log

3
2 n log log n

.

With the method of subsequences, it su�ces to show that

c2lQ2l (g2)→ 0

max
2l−1≤n<2l

|cnQn − c2l−1Q2l−1| → 0

almost surely as l→∞. We use the Chebyshev inequality and Lemma 3.2.5 to prove
the �rst line. For every ε > 0:

∞∑
l=1

P [|c2lQ2l (g2)| > ε] ≤ 1

ε2

∞∑
l=1

c22lE
[
Q2

2l (g2)
]
≤ C

1

ε2

∞∑
l=1

1

l3 log2 l
<∞

so c2lQ2l (g2)→ 0 follows with the Borel-Cantelli Lemma. To prove the convergence
of the maxima to 0, we �rst have to �nd a bound for the second moments, using a
well-known chaining technique. For example, by the triangle inequality we have

|c15Q15 − c8Q8| ≤ |c15Q15 − c14Q14|+ |c14Q14 − c12Q12|+ |c12Q12 − c8Q8| .

Using such a decomposition for all n with 2l−1 ≤ n < 2l, we conclude that

max
2l−1≤n<2l

|cnQn − c2l−1Q2l−1|

≤
l∑

d=1

max
i=1,...,2l−d

∣∣c2l−1+i2d−1Q2l−1+i2d−1 − c2l−1+(i−1)2d−1Q2l−1+(i−1)2d−1

∣∣ .
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3.3 Central Limit Theorem and Law of the Iterated Logarithm

As for any random variables Y1, . . . , Yn: E (max |Yi|)2 ≤
∑
EY 2

i , it follows that

E

[(
max

2l−1≤n<2l
|cnQn − c2l−1Q2l−1|

)2
]

≤ l
l∑

d=1

2l−d∑
i=1

E
[(
c2l−1+i2d−1Q2l−1+i2d−1 − c2l−1+(i−1)2d−1Q2l−1+(i−1)2d−1

)2]
≤ l

l∑
d=1

2l−d∑
i=1

E
[(
c2l−1+i2d−1

(
Q2l−1+i2d−1 −Q2l−1+(i−1)2d−1

)
+
(
c2l−1+i2d−1 − c2l−1+(i−1)2d−1

)
Q2l−1+(i−1)2d−1

)2]
≤ l

l∑
d=1

2l−d∑
i=1

2c22l−1+i2d−1E
[(
Q2l−1+i2d−1 −Q2l−1+(i−1)2d−1

)2]
+ l

l∑
d=1

2l−d∑
i=1

2
(
c2l−1+i2d−1 − c2l−1+(i−1)2d−1

)2
E
[
Q2

2l−1+(i−1)2d−1

]

=
l∑

d=1

2c22l−1+i2d−1E

2l−d∑
i=1

(
Q2l−1+i2d−1 −Q2l−1+(i−1)2d−1

)2
+ l

l∑
d=1

2l−d∑
i=1

2
(
c2l−1+i2d−1 +c2l−1+(i−1)2d−1

)(
c2l−1+i2d−1−c2l−1+(i−1)2d−1

)
E
[
Q2

2l−1+(i−1)2d−1

]
≤ l26c22l−1

2l∑
i1,i2,i3,i4=1

|E [g2 (Xi1 , Xi2) g2 (Xi3 , Xi4)]| ≤ C
1

l log2 l
.

In the last line we used the fact that the sequence (cn)n∈N is decreasing and Lemma
3.2.5. It now follows for all ε > 0 with the Chebyshev inequality

∞∑
l=1

P

[
max

2l−1≤n<2l
|cnQn − c2l−1Q2l−1| > ε

]

≤ 1

ε2

∞∑
l=1

E

[(
max

2l−1≤n<2l
|cnQn − c2l−1Q2l−1|

)2
]
≤ C

ε2

∞∑
l=1

1

l log2 l
<∞,

the Borel-Cantelli Lemma completes the proof.

Since α(k) ≤ 1
4
, condition 2. in Proposition 3.3.2 is always satis�ed with some

τ ∈ [0, 2]. In the extreme case τ = 0, i.e. when the series
∑n

k=0 kα
ρδ

2ρδ+δ+3ρ+2 (k)
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converges, the conclusion of Theorem 1 is close to the optimal rate which follows in
the independent case from the law of the iterated logarithm for degenerate U -statistics
of Dehling, Denker and Philipp [29] and Dehling [28]. Kanagawa and Yoshihara [57]
proved such a law of the iterated logarithm under strong mixing. They imposed
additional conditions on the summability of the eigenvalues of the function g(x, y)

which are not easy to check for many examples. In the other extreme case, the
statement of the theorem is rather trivial, as it follows by the strong law of large
numbers for U -statistcs. Under independence, this was shown by Hoe�ding [50].
Aaronson et al. [1] have shown the following: If (Xn)n∈N is a stationary ergodic
process, |g(x, y)| ≤ f1(x)f2(y) with Ef1(X1) ≤ ∞, Ef2(X2) ≤ ∞ and one of the
three following conditions hold:

1. The distribution of X1 is discrete,

2. The kernel g is continuous almost everywhere with respect to the distribution
of (X, Y ), where X, Y are independent with the same distribution as X1,

3. The sequence (Xn)n∈N is absolutely regular,

then Un(g) → θ almost surely and consequently Un(g2) → 0. The mild assumption
|g(x, y)| ≤ f1(x)f2(y) holds for all our examples. Furthermore, the function sn(x, y) =

sup‖(x,y)−(x′,y′)‖≤ 1
n
|g (x, y)− g (x′, y′)| in nonincreasing in n and bounded below by 0.

So we have monotone convergence and

E lim
n→∞

sn(X, Y ) = lim
n→∞

Esn(X, Y ) = 0,

because of the variation condition, so limn→∞ sn(x, y) = 0 almost everywhere with
respect to the distribution of (X, Y ), meaning that we have continuity almost ev-
erywhere, so the theorem of Aaronson et al. [1] applys. Dehling and Sharipov [31]
established a Marcinkiewicz-Zygmund stong law of large numbers under absolute
regularity.
We will now proceed with the law of the iterated logarithm for U -statistics. Were

are a lot of results for partial sums, but few for U -statistics. The law of the iter-
ated logorithm was originally established for partial sums of independent identically
distributed random variables by Khintchine in 1927 [61]. Hartman and Wintner [47]
were able to prove Khintchine's result under the optimal condition that the random
variables have mean zero and �nite second moments. Independently, Philipp [74],
Iosifescu [56] and Reznick [76] studied this problem under dependence; Oodaira and
Yoshihara [73] weakened their conditions. For partial sums of strongly mixing pro-
cesses, the sharpest results presently available are due to Rio [77].
Ser�ing [84] extended the law of the iterated logarithm to U -statistics in the in-

dependent case, we will extend this to dependent random variables. The following
theorem is similar to Theorem 2 of Dehling and Wendler [33]:
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Theorem 3.3.3. Let (Xn)n∈N be a stationary process and g be a kernel that satis�es

the variation condition and let one of the following four conditions hold:

1. g is bounded, (Xn)n∈N is strongly mixing, E |X1|ρ <∞ for a ρ > 0 and α(k) =

O(k−α) for an α > 2ρ+1
ρ

.

2. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is strongly mixing,

E |X1|ρ <∞ for a ρ > 0 and α(k) = O(k−α) for an α > 2ρδ+δ+3ρ+2
ρδ

.

3. g is bounded, (Xn)n∈N is near epoch dependent with approximation constants

(ak)k∈N on an absolutely regular process with mixing coe�cients (β(k))k∈N and

there is a β > 1 such that β(k) = O(k−β) and ak = O(k−β−3).

4. g has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N is near epoch dependent

with approximation constants (ak)k∈N on an absolutely regular process with mix-

ing coe�cients (β(k))k∈N and there is a β > 2+δ
δ

such that β(k) = O(k−β) and

ak = O(k−3β−1).

If σ2 = Var [g1 (X1)] + 2
∑∞

k=1 Cov [g1 (X1) g1 (X1+k)] > 0 then

lim sup
n→∞

±
√

n

8σ2 log log n
(Un (g)− θ) = 1

almost surely.

Proof. As shown in the proof of Theorem 3.3.1, the conditions of Proposition 3.3.2
are satis�ed for a τ < 1, so

Un(g2) = o

(
log

3
4 n log log n

n1− τ
2

)
= o

(√
log log n

n

)
almost surely. It remains to show that almost surely

lim sup
n→∞

±
√

1

2σ2n log log n

n∑
i=1

g1(Xi) = 1.

1. As
∑∞

k=1 α(k) <∞, this follows by Theorem 2 of Rio [77].

2. As
∑∞

k=1 k
2
δα(k) <∞, this follows by Theorem 2 of Rio [77].

3. As

E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|2

≤ CE |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]| ≤ C
√
al = O(n−

β+3
2 )
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and β+3
2

> 2, we can use Theorem 7 of Oodaira and Yoshihara [73] to obtain the
statement of this theorem.

4. We have that g(Xi) have �nite (2 + δ)-moments and are near epoch dependent

with approximation constants a′l = Ca
1+δ
3+2δ

l , so consequently

E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|2

= E

[
|g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|2 1

{|g1(X0)−E[g1(X0)|Z−l,...,Zl]|≤a
′− 1

1+δ
l }

]
+ E

[
|g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|2 1

{|g1(X0)−E[g1(X0)|Z−l,...,Zl]|>a
′− 1

1+δ
l }

]
≤ a

′− 1
1+δ

l E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|

+ a
′ δ
1+δ

l E |g1(X0)− E[g1(X0)|Z−l, . . . , Zl]|2+δ

≤ Ca
′ δ
1+δ

l ≤ Ca
δ

3+2δ

l ≤ Cl−(3β+1) δ
3+2δ

and (3β+1) δ
3+2δ

> 6+4δ
δ

δ
3+2δ

= 2. So we can use Theorem 8 of Oodaira and Yoshihara
[73] to obtain the statement of this theorem.
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4 U-Processes

4.1 De�nition and Applications

Not only U -statistics with �xed kernel g are of interest, but also the empirical U -
distribution function (Un(t))t∈R, which is for �xed t a U -statistic with kernel h(x, y) :=

1{g(x,y)≤t}. The Grassberger-Procaccia, see [44], and the Takens estimator of the
correlation dimension in a dynamical system are based on the empirical U -distribution
function. We will shortly describe the idea of dimension estimation, for more details
see Borovkova et al. [18].
We have seen that data from a dynamical system (Xn)n∈N with Xn+1 = T (Xn)

(where T is a piecewise smooth and expanding map) might show a behaviour similar
to other weak dependent sequences such as linear processes. But there is a criterion
to distinguish this two types of sequences: For a dynamical system, Xn+1 is a function
of Xn, so all vectors ((Xn+1, Xn))n∈N are concentrated on the graph of T , while for
example for a linear process there the innovations have a density or for a sequence of
independent random variables, the vectors ((Xn+1, Xn))n∈N also have a density. Let
us de�ne the correlation integral

C(r) = P (‖(Xn+1, Xn)− (Yn+1, Yn)‖ ≤ r)

where (Yn)n∈N is a independent copy of (Xn)n∈N. For dynamical systems we expect
for small r a behaviour as C(r) ≈ Cr, while for independent data, we would have
C(r) ≈ Cr2, so the exponent (the so-called correlation dimension) tells us about the
nature of the process (Xn)n∈N. A natural estimator of C(r) is the U -statistic with
kernel h(x, y, r) := 1{‖x−y‖≤r}.
Let us note at this point that our theory can be generalized to multidimensional

random variables straightforwardly for sequences, that are near epoch dependent on
absolutely regular processes, see also Borovkova et al. [18]. In contrast, for strongly
mixing sequences, this is not easy, as the coupling lemma 2.3.2 is not dimension free.
The functional central limit theorem for the empirical U -distribution function has

been established by Silverman [86], Nolan and Pollard [71] and Arcones and Giné
[6] for independent data, by Arcones and Yu [8] and Borovkova [17] for absolutely
regular data, and by Borovkova et al. [18] for data, which is near epoch dependent
on absolutely regular processes. Lévy-Leduc et al. [66] investigated U -processes of
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4 U -Processes

long range dependent data. The functional law of the iterated logarithm for the
empirical U -distribution function has been proved by Arcones [3], Arcones and Giné
[7] under independence. The Strong invariance principle has been investigated by
Dehling et al. [29]. We will show a strong invariance principle under dependence. As
a corollary, we will obtain the law of the iterated logarithm to sequences which are
strongly mixing or L1 near epoch dependent on an absolutely regular process and the
central limit theorem under conditions which are slightly di�erent from the conditions
in Borovkova et al. [18]. Let us now proceed with precise de�nitions:

De�nition 4.1.1. We call a measurable and bounded function h : R × R × R →
R which is symmetric in the �rst two arguments and non-decreasing in the third
argument a kernel function. We will assume that for all x, y ∈ R: limt→∞ h(x, y, t) =

1, limt→−∞ h(x, y, t) = 0. For �xed t ∈ R, we de�ne

Un (t) :=
2

n(n− 1)

∑
1≤i<j≤n

h (Xi, Xj, t)

and call the process (Un (t))t∈R the empirical U -distribution function. We de�ne the
U -distribution function as U (t) := E [h (X, Y, t)], where X, Y are independent with
the same distribution as X1, and the empirical U -process as (

√
n (Un(t)− U(t)))t∈R.

The main example for this is the empirical distribution function of the sample
(g(Xi, Xj))1≤i<j≤n which is the empirical U -distibution function with the kernel func-
tion h(x, y, t) := 1{g(x,y)≤t}. But other kernel function might also be of interest. If
we study h(x, y, t) = 1

2
(1{x≤t} + 1{y≤t}), we obtain the ordinary empirical distribu-

tion function. Similar to U -statistics with �xed kernel, we introduce the Hoe�ding
decomposition of the empirical U -distribution function into a linear and a so-called
degenerate part:

Un (t) = U (t) +
2

n

n∑
i=1

h1 (Xi, t) +
2

n (n− 1)

∑
1≤i<j≤n

h2 (Xi, Xj, t)

where

h1(x, t) := Eh(x, Y, t)− U (t)

h2(x, y, t) := h(x, y, t)− h1(x, t)− h1(y, t)− U (t) .

Because we will consider dependent random variables, we need an additional con-
tinuity property of the kernel function, a uniform version of De�nition 3.1.8:

De�nition 4.1.2. h satis�es the uniform variation condition, if is a constant L, such
that for all t ∈ R, ε > 0

E

[
sup

‖(x,y)−(X,Y )‖≤ε
|h (x, y, t)− h (X, Y, t)|

]
≤ Lε,
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4.1 De�nition and Applications

where X, Y are independent with the same distribution as X1 and ‖·‖ denotes the
Euclidean norm.

This condition holds for many discontinuous functions, as the jump is averaged out
by the expectation.

Example 4.1.3. The kernel function h(x, y, t) := 1{|x−y|≤t} satis�es the uniform
variation condition, if X1 has a bounded densiy. Then |X − Y | also has a bounded
density and for every ε > 0

E

[
sup

‖(x,y)−(X,Y )‖≤ε

∣∣1{|x−y|≤t} − 1{|X−Y |≤t}∣∣]
≤ P

[
t−
√

2ε < |X − Y | ≤ t+
√

2ε
]
≤ Lε.

Note that for this example, the U -distribution function is Lipschitz continuous.

The empirical U -process is a generalization of the empirical process, which is given
by ( 1√

n

∑n
i=1(1{Xi≤t} − P (Xi ≤ t)))t∈[0,1]. For uniformly on [0, 1] distributed and

independent random variables (Xn)n∈N, the empirical process converges weakly to a
Brownian Bridge, as was proved by Donsker [36]. The functional law of the iterated
logarithm established by Finkelstein [41] says that (( 1√

2n log logn

∑n
i=1(1{Xi≤t}−P (Xi ≤

t)))t∈[0,1])n∈N is almost surely relatively compact and the limit set is given by

{f |f(0) = f(1) = 0, f absolutely continuous ,
∫ 1

0

f ′2(t)dt = 1}.

Müller [70] determined the limit distribution of the double indexed empirical process(
1√
n

∑
1≤i≤sn

(1{Xi≤t} − t)

)
t,s∈[0,1]

.

It converges weakly towards a Gaussian process (K(t, s))s,t∈[0,1] with covariance func-
tion EK(t, s)K(t′, s′) = min{s, s′}(min{t, t′} − tt′), which is the covariance function
of a Brownian bridge in t direction and of a Brownian motion in s direction. Kiefer
[60] proved an almost sure invariance principle: After enlarging the probability space,
there exists a copy of the Kiefer-Müller process K such that the empirical process
and this copy are close together with respect to the supremum norm.
A strong invariance principle is a very powerful asymptotic theorem, as the limit

behaviour of Gaussian processes is well understood and it is then possible to conclude
that the approximated process has the same asymptotic properties. Note that a
Kiefer-Müller processes can be described as a functional Brownian motion, as its
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4 U -Processes

increments in s direction are independent Brownian bridges. Kuelbs and Lepage [63]
established the law of the iterated logarithm for Brownian motion in Banach spaces.
Berkes and Philipp [14] extended Kiefer's result to dependent random variables.

The approximating Gaussian process K has then the covariance function

EK(t, s)K(t′, s′) = min{s, s′}
(
4 Cov

[
1{X1≤t},1{X1≤t′}

]
+ 4

∞∑
k=1

Cov
[
1{X1≤t},1{Xk+1≤t′}

]
+ 4

∞∑
k=1

Cov
[
1{Xk+1≤t},1{X1≤t′}

] )
.

Their proof is based on a special coupling method, measuring dependence by the
di�erence of the characteristic function conditionalized on the distant past and the
unconditional one, see Berkes and Philipp [15].
We have the following scaling behaviour: ( 1√

n
K(t, ns))s,t∈[0,1] has the same distri-

bution as (K(t, s))s,t∈[0,1]. Furthermore, a functional law of the iterated logarithm
holds: The sequence (

(
1√

2n log log n
K(t, ns))s,t∈[0,1]

)
n∈N

is almost surely relatively compact (with respect to the supremum norm). The limit
set is the unit ball of the the reproducing kernel Hilbert space, which we will introduce
now:

De�nition 4.1.4. Let C : (Rd)2 → R a covariance function (that means symmetric
and positive semide�nit). We de�ne

Km :=

{
f : Rd → R

∣∣f(x) =
m∑
i=1

biC(x, yi), b1, . . . , bm ∈ R, y1, . . . , ym ∈ Rd

}
.

For f(x) =
∑m1

i=1 biC(x, yi) ∈ Km1 , g(x) =
∑m2

j=1 b
′
iC(x, zi) ∈ Km2 , the inner product

of f and g is given by

(f, g) =

m1∑
i=1

m2∑
j=1

bib
′
jC(yi, zj)

and
√

(f, f) is a norm on every Km. We call K =
⋃∞
m=1Km (the completion of the

union) reproducing kernel Hilbert space associated with covariance function C.

Oodaira [72] noticed that the limit set in the functional law of the iterated logarithm
could be described as the unit ball U of this space. For more information about the
reproducing kernel Hilbert space, see Aronszajn [9].
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4.2 4th Moment Bounds and Uniform Hoe�ding Decomposition

4.2 4th Moment Bounds and Uniform Hoe�ding

Decomposition

Lemma 4.2.1. Let (Xn)n∈Z be a stationary, strongly mixing sequence with α (n) =

O (n−α) for some α > 3 and C1, C2 > 0 constants. Then there exists a constant C,

such that for all measurable, non-negative functions g : R → R bounded by C1 and

all n ∈ N

E

(
n∑
i=1

g (Xi)− E [g (X1)]

)4

≤ Cn2 (log n)2
(

max
{
E |g (X1)| , C2n

− 3
4

})1+γ
with γ = α−2

α
.

Proof. We de�ne the random variables Yi = g (Xi)−Eg (X1). Recall that by Lemma
2.2.2 with p1 = p2 = 2α

α−3 and p3 = α
3
we obtain the following three inequalities for all

i, j, k ∈ N:

|E [Y0YiYi+jYi+j+k]| ≤ Cα
3
α (i) ‖Y0‖ 2α

α−3
‖Y0YjYj+k‖ 2α

α−3
,

|E [Y0YiYi+jYi+j+k]| ≤ C |E [Y0Yi]| |E [Y0Yk]|+ Cα
3
α (j) ‖Y0Yi‖ 2α

α−3
‖Y0Yk‖ 2α

α−3
,

|E [Y0YiYi+jYi+j+k]| ≤ Cα
3
α (k) ‖Y0YiYi+j‖ 2α

α−3
‖Y0‖ 2α

α−3
.

By Lemma 2.2.1 with p1 = p2 = 2α
α−1 and p3 = α, we get

|E [Y0Yi]| ≤ Cα
1
α (i) ‖Y1‖22α

α−1
.

As Yn is bounded, we have that

‖Y1‖ 2α
α−3

=
(
E |Y1|

2α
α−3

)α−3
2α ≤

(
C

α+3
α−3

1 E |Y1|
2α
α−3

)α−3
2α

≤ C (E |Y1|)
α−3
2α

‖Y1‖ 2α
α−1
≤
(
C

α+1
α−1

1 E |Y1|
)α−1

2α

≤ C (E |Y1|)
α−1
2α

‖Y0YjYj+k‖ 2α
α−3
≤
∥∥Y 3

1

∥∥
2α
α−3

≤ C2
1 ‖Y1‖ 2α

α−3
≤ C (E |Y1|)

α−3
2α

and it follows that

|E [Y0YiYi+jYi+j+k]| ≤ Cα
1
α (i)α

1
α (k) (E |Y1|)

2α−2
α + Cα

3
α (max {i, j, k}) (E |Y1|)

α−3
α .
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Now by stationarity of the process and the linearity of the expection the following
fourth moment inequality holds:

E

(
n∑
i=1

Yi

)4

≤ Cn
n∑

i,j,k=1

|E [Y0YiYi+kYi+k+j]|

≤ Cn2

n∑
i=1

α
1
α (i)

n∑
k=1

α
1
α (k) (E |Y1|)

2α−2
α + Cn

n∑
i=1

i2α
3
α (i) (E |Y1|)

α−3
α .

As max
{
E |g (X1)| , C2n

− 3
4

}
≥ C2n

− α
α+1 , we have that

(E |Y1|)
α−3
α ≤ Cn

(
max

{
E |g (X1)| , C2n

− 3
4

}) 2α−2
α

and with α (n) = O (n−α), we arrive at

E

(
n∑
i=1

Yi

)4

≤Cn2

n∑
i=1

1

i

n∑
k=1

1

k
(E |Y1|)

2α−2
α + Cn2

n∑
i=1

i2
1

i3

(
max

{
E |g (X1)| , C2n

− 3
4

}) 2α−2
α

≤Cn2

(
n∑
i=1

1

i

)2 (
max

{
E |g (X1)| , C2n

− 3
4

}) 2α−2
α

=Cn2 (log n)2
(

max
{
E |g (X1)| , C2n

− 3
4

})1+γ
.

Lemma 4.2.2. Let (Xn)n∈Z be a near epoch dependent sequence on an absolutely

regular process (Zn)n∈Z with mixing coe�cients β(n) = O
(
n−β

)
for a β > 3 and

approximation constants an = O
(
n−(β+3)

)
. Let C1, C2, L > 0 be constants. Then

there exists a constant C, such that for all measurable, non-negative functions g :

R → R that are bounded by C1 and satisfy the variation condition with constant L,

and all n ∈ N we have

E

(
n∑
i=1

g (Xi)− E [g (X1)]

)4

≤ Cn2 (log n)2
(

max{E |Y1| , C2n
− 3

4}
)1+γ

with γ = β−3
β+1

.

Proof. We de�ne the random variables Yi = g (Xi)−Eg (X1). Then by Lemma 2.1.7,

(Yn)n∈Z is near epoch with approximation constants ãn = (L+C1)
√
an = O

(
n−

β+3
2

)
.
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Using Lemma 2.2.5 with δ = 6
β−3 , we obtain

|EY0YiYi+jYi+j+k|

≤ C

(
β

3
β

(
bmax {i, j, k}

3
c
)
‖Y0‖22β

β−3
+ ã

6
β+3

bmax{i,j,k}
3

c
‖Y0‖

2β
β+3
2β
β−3

)
+ |E [Y0Yi]E [Y0Yk]| .

Making use of Lemma 2.2.4 and δ = 2
β−1 , it follows that

|EY0YiYi+jYi+j+k| ≤ C

(
β

3
β

(
bmax {i, j, k}

3
c
)
‖Y0‖22β

β−3
+ ã

6
β+3

bmax{i,j,k}
3

c
‖Y0‖

2β
β+3
2β
β−3

)
+C

(
β

1
β

(
bk

3
c
)
‖Y0‖22β

β−1
+ ã

2
β+1

b k
3
c ‖Y0‖

2β
β+1
2β
β−1

)
·
(
β

1
β

(
b i

3
c
)
‖Y0‖22β

β−1
+ ã

2
β+1

b i
3
c ‖Y0‖

2β
β+1
2β
β−1

)
.

First note that

β
1
β (n) = O

(
n−1
)
, ã

2
β+1 = O

(
n−1
)
,

β
3
β (n) = O

(
n−3
)
, ã

6
β+3 = O

(
n−3
)
,

and that

‖Y0‖22β
β−1
≤ C ‖Y0‖

2β
β+1
2β
β−1

≤ C ‖Y0‖
β−1
β+1

1 ,

‖Y0‖22β
β−3
≤ C ‖Y0‖

2β
β+3
2β
β−3

≤ C ‖Y0‖
β−3
β+3

1 ,

as Yi is bounded. Furthermore, ‖Y0‖
β−3
β+3

1 ≤ Cn
(

max{‖Y0‖1 , C2n
− 3

4}
) 2β−2

β+1
. Now by

stationarity

E

(
n∑
i=1

Yi

)4

≤ Cn
n∑

i,j,k=1

|E [Y0YiYi+jYi+j+k]|

≤Cn2

n∑
i=1

β
1
β

(
b i

3
c
) n∑

k=1

β
1
β

(
bk

3
c
)
‖Y1‖

2β−2
β

1 + Cn2

n∑
i=1

ã
2

β+1

b i
3
c

n∑
k=0

ã
2

β+1

b k
3
c ‖Y1‖

2β−2
β+1

1

+ Cn

n∑
m=1

m2β
3
β

(
bm

3
c
)
‖Y0‖

β−3
β

1 + Cn

n∑
m=1

m2ã
6

β+3

bm
3
c ‖Y0‖

β−3
β+3

1

≤Cn2

n∑
i=1

i−1
n∑
k=1

k−1
(

max{‖Y0‖1 , C2n
− 3

4}
) 2β−2

β+1

+ Cn2

n∑
m=1

m2m−3
(

max{‖Y0‖1 , C2n
− 3

4}
) 2β−2

β+1

≤Cn2 (log n)2
(

max{‖Y0‖1 , C2n
− 3

4}
) 2β−2

β+1
= Cn2 (log n)2

(
max{‖Y0‖1 , C2n

− 3
4}
)1+γ

.
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Proposition 4.2.3. Let h be a kernel function that satis�es the uniform variation

condition such that the U-distribution function U is Lipschitz-continuous and one of

the following two mixing conditions is satis�ed:

1. (Xn)n∈N is strongly mixing with mixing coe�cients α(n) = O(n−α) for α ≥ 8

and E|Xi|ρ <∞ for a ρ > 1
4
.

2. (Xn)n∈N is near epoch dependent on an absolutely regular process with mixing

coe�cients β(n) = O(n−β) for β ≥ 8 and approximation constants an = O(n−a)

for a = max {β + 3, 12}.

Then:

sup
t∈R

∣∣∣∣∣ ∑
1≤i<j≤n

h2 (Xi, Xj, t)

∣∣∣∣∣ = o
(
n

3
2
− γ

8

)
almost surely with γ = α−2

α
respectively γ = β−3

β+1
.

Proof. We de�ne Qn(t) :=
∑

1≤i<j≤n h2 (Xi, Xj, t). For l ∈ N choose t1,l, . . . , tk−1,l

with k = kl = O
(

2
5
8
l
)
, such that

−∞ = t0,l < t1,l < . . . < tk−1,l < tk,l =∞,

and 2−
5
8
l ≤ |U(tr,l) − U(tr−1,l)| ≤ 2 · 2− 5

8
l. By the Lipschitz-continuity of the U -

distribution function |tr,l − tr−1,l| ≥ C

2
5
8 l
. By our assumptions, h and U are non-

decreasing in t, so we have for any t ∈ [tr−1,l, tr,l] and 2l ≤ n < 2l+1

|Qn(t)| =

∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, t)− h1(Xi, t)− h1(Xj, t))− U(t))

∣∣∣∣∣
≤ max

{∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, tr,l)− h1(Xi, t)− h1(Xj, t)− U(t))

∣∣∣∣∣ ,∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, tr−1,l)− h1(Xi, t)− h1(Xj, t)− U(t))

∣∣∣∣∣
}

≤ max

{∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, tr,l)− h1(Xi, tr,l)− h1(Xj, tr,l)− U(tr,l))

∣∣∣∣∣ ,∣∣∣∣∣ ∑
1≤i<j≤n

(h (Xi, Xj, tr−1,l)− h1(Xi, tr−1,l)− h1(Xj, tr−1,l)− U(tr−1,l))

∣∣∣∣∣
}

+ (n− 1) max

{∣∣∣∣∣
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, t)))

∣∣∣∣∣ ,
∣∣∣∣∣
n∑
i=1

(h1(Xi, t)− h1(Xi, tr−1,l)))

∣∣∣∣∣
}

+
n(n− 1)

2
|U(tr,l)− U(tr−1,l)|
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≤ max {|Qn(tr,l)|, |Qn(tr−1,l)|}

+ (n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, tr−1,l)))

∣∣∣∣∣+ 2
n(n− 1)

2
|U(tr,l)− U(tr−1,l)|.

So we have that

sup
t∈R
|Qn(t)| ≤ max

r=0,...,k
|Qn(tr,l)|+ max

r=0,...,k
(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, tr−1,l)))

∣∣∣∣∣
+ max

r=0,...,k
n(n− 1)|U(tr,l)− U(tr−1,l)|.

We will treat these three summands separately. We have for the last summand

that maxr=0,...,k n(n − 1)|U(tr,l) − U(tr−1,l)| ≤ Cn22−
5
8
l = o

(
n

3
2
− γ

8

)
by the choice of

t1, . . . , tk−1. For the �rst summand, we obtain with similar arguments as in the proof
of Proposition 3.3.2

E[ max
n=2l,...,2l+1−1

max
r=0,...,k

|Qn(tr,l)|2]

≤
k∑
r=0

E

( l∑
d=0

max
i=1,...,2l−d

∣∣Q2l+i2d(tr,l)−Q2l+(i−1)2d(tr,l)
∣∣)2


≤
k∑
r=0

l
l∑

d=0

2l−d∑
i=1

E
[(
Q2l+i2d(tr,l)−Q2l+(i−1)2d(tr,l)

)2]
≤

k∑
r=0

l
l∑

d=0

2l+1∑
i1,j1,i2,j2=1

|E [h2(Xi1 , Xj1 , t)h2(Xi2 , Xj2 , t)]|

≤Ckl222(l+1) ≤ Cl22(2+ 5
8
)l,

where we used Lemma 3.2.5 in the last line. With the Chebyshev inequality, it follows
for every ε > 0

∞∑
l=1

P

[
max

n=2l,...,2l+1−1
max
r=0,...,k

|Qn(tr,l)| > ε2l(
3
2
− γ

8
)

]
≤

∞∑
l=1

1

ε22l(3−
γ
4
)
E[ max

n=2l,...,2l+1−1
max
r=0,...,k

|Qn(tr,l)|2] ≤
∞∑
l=1

1

ε22l(3−
γ
4
)
l22(2+ 5

8
)l <∞,

as γ ≤ 1, so by the Borel Cantelli lemma

P

[
max

n=2l,...,2l+1−1
max
r=0,...,k

|Qn(tr,l)| > ε2l(
3
2
− γ

8
) i.o.

]
= 0
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4 U -Processes

(the meaning of the abbreviation i.o. is �in�nitely often�) and maxr=0,...,k |Qn(tr,l)| =
o
(
n

3
2
− γ

8

)
almost surely. It remains to show the convergence of the second summand.

By Lemma 4.2.1 respectively 4.2.2 for 2l ≤ n < 2l+1

E

(
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, tr−1,l))

)4

≤ Cn2 (log n)2 |U(tr,l)− U(tr−1,l)|1+γ

as |U(tr,l)− U(tr−1,l)| ≥ 2−
5
8
l ≥ C2−

3
4
l and consequently

E

(
max

n=2l,...,2l+1−1
max
r=1,...,k

(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, tr−1,l))

∣∣∣∣∣
)4

≤ 24(l+1)

k∑
r=1

E

(
max

n=2l,...,2l+1−1

∣∣∣∣∣
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, tr−1,l))

∣∣∣∣∣
)4

≤ C26ll2k( max
r=1,...,k

|U(tr,l)− U(tr−1,l)|)1+γ ≤ Cl22(6− 5
8
γ)l,

where we used Corollary 1 of Móricz to obtain the last line. Remember that by our
choice k = kl = O(2

5
8
l). We conclude that

∞∑
l=0

P

[
max

n=2l,...,2l+1−1
max
r=1,...,k

(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, tr−1,l))

∣∣∣∣∣ > ε2( 3
2
− γ

8
)l

]

≤
∞∑
l=0

C

ε42l(6−
γ
2
)
E

(
max

n=2l,...,2l+1−1
max
r=1,...,k

(n− 1)

∣∣∣∣∣
n∑
i=1

(h1(Xi, tr,l)− h1(Xi, tr−1,l))

∣∣∣∣∣
)4

≤
∞∑
l=0

C

ε42l(6−
γ
2
)
l22(6− 5

8
γ)l =

∞∑
l=0

Cl2

ε42
γ
8
l
<∞.

The Borel Cantelli lemma completes the proof.

4.3 Strong Invariance Principle

The asymptotic theory for the empirical U -process makes use of the Hoe�ding decom-
position, recall that h1(x, t) := E [h(x, Y, t)] − U(t). Under the mixing assumptions
of the theorem below, the following covariance function converges absolutely and is
continuous (compare Theorem 5 of Borovkova et al. [18]):

Γ(t, t′) = 4 Cov [h1 (X1, t) , h1 (X1, t
′)]

+ 4
∞∑
k=1

Cov [h1 (X1, t) , h1 (Xk+1, t
′)] + 4

∞∑
k=1

Cov [h1 (Xk+1, t) , h1 (X1, t
′)] .

The following theorem was �rst published in Wendler [94]:
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4.3 Strong Invariance Principle

Theorem 4.3.1. Let h be a kernel function that satis�es the uniform variation con-

dition such that the U-distribution function U is Lipschitz-continuous and one of the

following two mixing conditions is satis�ed:

1. (Xn)n∈N is strongly mixing with mixing coe�cients α(n) = O(n−α) for α ≥ 8

and E|Xi|ρ <∞ for a ρ > 1
4
.

2. (Xn)n∈N is near epoch dependent on an absolutely regular process with mixing

coe�cients β(n) = O(n−β) for β ≥ 8 with approximation constants an = O(n−a)

for a = max {β + 3, 12}.

Then there exists a centered Gaussian process (K(t, s))t,s∈R (after enlarging the prob-

ability space if necessary) with covariance function

EK(t, s)K(t′, s′) = min {s, s′}Γ(t, t′)

such that almost surely

sup
t∈R
s∈[0,1]

1√
n

∣∣bnsc(Ubnsc(t)− U(t))−K(t, ns)
∣∣ = O(log−

1
3840 n).

Proof. We use the Hoe�ding decomposition

Un (t) = U (t) +
2

n

n∑
i=1

h1 (Xi, t) +
2

n (n− 1)

∑
1≤i<j≤n

h2 (Xi, Xj, t) .

By Proposition 4.2.3, we have almost surely

sup
t∈R
s∈[0,1]

1

n
3
2 s

∣∣∣∣∣ ∑
1≤i<j≤ns

h2 (Xi, Xj, t)

∣∣∣∣∣
≤ n−

γ
8 sup

t∈R
n′=1,...n

1

(n′)
3
2
− γ

8

∣∣∣∣∣ ∑
1≤i<j≤n′

h2 (Xi, Xj, t)

∣∣∣∣∣ = O(n−
γ
8 ).

So the statement of the theorem follows if we can proof that there exists a centered
Gaussian process (K(t, s))t,s∈R

sup
t∈R
s∈[0,1]

1√
n

∣∣bnsc(Ubnsc(t)− U(t))−K(t, ns)
∣∣

≤ sup
t∈R
s∈[0,1]

1√
ns

∣∣∣∣∣
(

2
∑

1≤i≤ns

h1(Xi, t)−K(t, ns)

)∣∣∣∣∣+ sup
t∈R
s∈[0,1]

1

n
3
2 s

∣∣∣∣∣ ∑
1≤i<j≤ns

h2 (Xi, Xj, t)

∣∣∣∣∣
= O(log−

1
3840 n).

This proposition is basically Theorem 1 of Berkes and Philipp [14], which we have to
generalize in three aspects:
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4 U -Processes

1. Berkes and Philipp assume that the covariance kernel Γ is positive de�nite, we
want to avoid this condition here.

2. Berkes and Philipp consider indicator functions 1{x≤t}, while in this version of
the proposition, we deal with more general functions Eh(x, Y, t).

3. Theorem 1 of Berkes and Philipp is restricted to the distribution function F (t) =

E1{Xi≤t} = t, we will extend this to a Lipschitz continuous function U , bounded
by 0 and 1.

Berkes and Philipp assume that (Xn)n∈N is near epoch dependent on a strongly mix-
ing process, which holds under both our mixing assumptions.

1. In the proof of their Theorem 1, Berkes and Philipp use the fact that Γ is
positive de�nite only for two steps. Their Proposition 4.1 (page 124) also holds if
this is not the case. It is easy to see that the characteristic functions of the �nite
dimensional distributions then might converge to 1 at some points, but with the re-
quired rate. Furthermore, we have to show (page 135) that for all t1, . . . , tdk ∈ [0, 1],
P [‖(K(t1, 1), . . . , K(tdk , 1))‖ ≥ 1

4
Tk] ≤ δk, where Tk and δk are de�ned in their article.

Let Γdk = (Γ(ti, tj))1≤i,j≤dk be the covariance matrix of K(t1, 1), . . . , K(tdk , 1) and λ
its biggest eigenvalue. We �rst consider the case that λ > 0. As Γdk is symmetric and

positive semide�nite, there exist a matrix Γ
1
2
dk

such that (Γ
1
2
dk

)tΓ
1
2
dk

= Γdk and the ran-

dom vector (K(t1, 1), . . . , K(tdk , 1)) has the same distribution as Γ
1
2
dk

(W1, . . . ,Wdk)
t,

where W1, . . . ,Wdk are independent standard normal random variables. So it follows
that

P [‖(K(t1, 1), . . . , K(tdk))‖ ≥
1

4
Tk] = P [‖Γ

1
2
dk

(W1, . . . ,Wdk)‖ ≥
1

4
Tk]

≤ P [
√
λ‖(W1, . . . ,Wdk)

t‖ ≥ 1

4
Tk]

=
1

(2π)
1
2dk

∫
‖(x1,...,xdk )‖≥

1

4
√
λ
Tk

exp(−1

2
(x21 + . . .+ x2dk))dx1 . . . dxdk .

The rest of the proof is then exactly the same as in Berkes and Philipp [14]. In the case
λ = 0, we have that Γ = 0, so trivially P [‖(K(t1, 1), . . . , K(tdk))‖ ≥ 1

4
Tk] = 0 ≤ δk.

2. The proof uses di�erent properties of the indicator functions. If the process
(Xn)n∈N is near epoch dependent with constants (an)n∈N, then as a consequence of
Lemma 3.2.1 of Philipp [75] the process

(
1{Xn≤t}

)
n∈N is near epoch dependent with

constants (
√
an)n∈N. The same holds for the sequence (h1(Xn, t))n∈N by the bound-

edness of h1 and Lemma 2.1.7.
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4.3 Strong Invariance Principle

Furthermore, h and U are nondecrasing in t. Berkes and Philipp used di�erent mo-
ment properties, which we also assume: h1(Xn, t) is bounded by 1 and E|h1(Xn, t)−
h1(Xn, t

′)| ≤ C|t− t′| for t, t′ ∈ R, so consequently for m ∈ R ‖h1(Xn, t)‖m ≤ 1 and
‖h1(Xn, t)− h1(Xn, t

′)‖m ≤ |t − t′| 1m . So this more general version can be proved
along the lines of the proof in Berkes and Philipp [14].

3. If U(t) = t does not hold, note that Eh1(Xi, tp) = U(tp) = p with tp = U−1(p) :=

inf{t ∈ R|U(t) ≥ p}, because U is continuous. Clearly, the uniform variation con-
dition holds for h(x, y, U−1(p)). Furthermore, notice that if U(t) = U(s), when
h1(Xi, t) = h1(Xi, s) almost surely by monotonicity of h, so

n∑
i=1

h1(Xi, t) =
n∑
i=1

h1(Xi, tU(t))

almost surely. From the �rst two parts of the proof, we know that there is a centered
Gaussian process K? with covariance function

E[K?(p, s)K?(p′, s′)] = min {s, s′}Γ(tp, tp′)

with

sup
p∈[0,1]
s∈[0,1]

1√
n

∣∣∣∣∣
(

2
∑

1≤i≤ns

h1(Xi, tp)−K?(p, ns)

)∣∣∣∣∣ = O(log−
1

3840 n)

almost surely. The Gaussian process K with K(t, s) = K?(U(t), s) has the required
covariance function and

sup
t∈R
s∈[0,1]

1√
n

∣∣∣∣∣
(

2
∑

1≤i≤ns

h1(Xi, t)−K(t, ns)

)∣∣∣∣∣ =

sup
t∈R
s∈[0,1]

1√
n

∣∣∣∣∣
(

2
∑

1≤i≤ns

h1(Xi, tU(t))−K?(U(t), ns)

)∣∣∣∣∣ = O(log−
1

3840 n).

The rate of convergence to zero in this theorem is very slow, but the same as in
Berkes and Philipp [14], as we made use of their results and methods. By the scaling
property of the process K, we obtain the asymptotic distribution of Ubnsc(t), and by
Theorem 2.3 of Arcones [4] a functional LIL:

Corollary 4.3.2. Under the assumptions of Theorem 4.3.1 the empirical U-process(
bnsc√
n

(Ubnsc(t)− U(t))

)
t∈R,s∈[0,1]
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4 U -Processes

converges weakly in the space D(R × [0, 1]) of càdlàg functions (equipped with the

supremum norm) to a centered Gaussian process (K(t, s))t,s∈R introduced in Theorem

4.3.1.

Corollary 4.3.3. Under the assumptions of Theorem 4.3.1, the sequence((
bnsc√

2n log log n
(Ubnsc(t)− U(t))

)
t∈R,s∈[0,1]

)
n∈N

is almost surely relatively compact in the space D(R × [0, 1]) of càdlàg functions

(equipped with the supremum norm) and the limit set is the unit ball UK of the repro-

ducing kernel Hilbert space K associated with the covariance function of the process

K.
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5 U-Quantiles

5.1 De�nition and Applications

Apart from having a small variance and bias, a good estimator should be robust,
meaning that extreme outliers which might result from heavy tails or from wrong
measurement should not a�ect the estimation to much. This can be modeled by
random variables (Xn)n∈N having a distribution function F = (1−ε)F1+εF2, meaning
that with probability ε, we have an outlier with distribution F2, while the good
observations have distribution F1. Robustness can be quanti�ed with the breakdown
point, the minimal fraction of observations that can shift the estimation arbitrarily.
Suppose we want to estimate a functional T (F ) of the distribution by T (Fn), the
value of for the empirical distribution function, that T (Fn) is consistent, and that T
can take any real value. More precisely, the breakdown point ε? is de�ned as

ε? = ε?F1
:= sup

{
ε > 0

∣∣ sup
F2

|T (F1)− T ((1− ε)F1 + εF2)| <∞
}
.

In many cases, the value of ε?F1
does not depend on F1. For more details on robust

estimation see the book of Huber [54]. The sample mean belonging to the functional
T (F ) =

∫
xdF (x) is not robust, as its breakdown point is 0. An robust estimator

of location is the median (T (F ) = F−1(1
2
)) with breakdown point ε = 0.5. But the

median has a rather low relativ asymptotic e�ciency of 64 % for independent normal
distributed random variables, meaning that the variance in this situation is increased
compared to the sample mean.

The Hodges-Lehmann [51] estimator is another robust estimator of location and

is de�ned as Hn = median
{
Xi+Xj

2

∣∣1 ≤ i < j ≤ n
}
. The breakdown point of this

estimator is 29%, while the e�ciency is 96% (See Choudhury and Ser�ing [22]), so the
variance is increased only slightly. The Hodges-Lehmann estimator is an example of a
U -quantile, i.e. a quantile of the sample (g (Xi, Xj))1≤i<j≤n, where g is a measurable
and symmetric function. In the example of the Hodges-Lehmann estimator, we use
g(x, y) := 1

2
(x+y). To study U -quantiles, we will adopt concepts for ordinary sample

quantiles.

Let (Xn)n∈Z be a stationary sequence of real-valued random variables with distri-
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5 U -Quantiles

Figure 5.1: Empirical Distribution Function and Remainder in Bahadur
Representation
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Fn(tp)

F−1n (p)− tp

�
�

�� Fn(tp)− p
tp − F−1n (p)

≈ F ′(tp)

F−1n (p)− tp =
p− Fn(tp)

F ′(tp)
+Rn

bution function F and p ∈ (0, 1). Then the p-quantile tp of F is de�ned as

tp = F−1 (p) := inf
{
t ∈ R

∣∣F (t) ≥ t
}

and can be estimated by the empirical p-quantile, i.e. the dn
p
e-th order statistic

of the sample X1 . . . , Xn. This also can be expressed as the p-quantile F−1n (p) of
the empirical distribution function Fn (t) := 1

n

∑n
i=1 1Xi≤t. It is clear that F−1n (p)

is greater than tp i� Fn (tp) is smaller than p. The relation between the empirical
distribution function and the empirical quantile can be re�ned with the following
heuristic argument: If the the function Fn converges to F , one might hope that the

slope also converges, so
Fn(tp)− p
tp − F−1n (p)

≈ f(tp) := F ′(tp). This leads to the Bahadur

representation [11]

F−1n (p) = tp +
p− Fn (tp)

f (tp)
+Rn.

Bahadur [11] showed that Rn = O
(
n−

3
4 (log n)

1
2 (log log n)

1
4

)
. This was re�ned by

Kiefer [58] to

lim sup
n→∞

(
n

2 log log n

) 3
4

Rn = 2
1
2 3−

3
4p

1
4 (1− p)

1
4 .

Kiefers proof is very elaborated, a much simpler proof, but with a weaker result (only
convergence in probability) was given by Ghosh [43].
The following short calculation shows that Rn is related to the (local) empirical pro-

cess (Fn (t+ tp)− Fn (tp)− f (tp) t)t centered in (tp, Fn (tp)) and its inverse denoted
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5.1 De�nition and Applications

by Zn:

Zn (x) := (Fn (·+ tp)− Fn (tp))
−1 (x)− x

f (tp)

= inf
{
s
∣∣Fn (s+ tp)− Fn (tp) ≤ x

}
− x

f (tp)

= inf
{
s
∣∣Fn (s) ≤ x+ Fn (tp)

}
− x

f (tp)
− tp

= F−1n (x+ Fn (tp))−
x

f (tp)
− tp.

So we have

Zn (p− Fn (tp)) = F−1n (p)− tp +
Fn (tp)− p
f (tp)

= Rn.

Deheuvels and Mason [26] used this argument to give a new proof of the precise
rate of Rn given by Kiefer [58]. The results under mixing conditions are not as
precise. We will prove our result in the following way: The �rst step of our proof
is to show that (Fn (t+ tp)− Fn (tp)− f (tp) t)t∈In converges to zero at some rate
uniformly on intervals I1 ⊃ I2 ⊃ I3 . . . By a theorem of Vervaat [90], −Zn has the
same limit behaviour as the (local) empirical process. We will then conclude that
Rn = Zn (F (tp)− Fn (tp)) converges to zero at the same rate and obtain the central
limit theorem and the law of the iterated logarithm as easy corollaries.
There is a broad literature on the Bahadur representation for dependent data be-

ginning with Sen, who studied m-dependent [81] and φ-mixing random variables [83].
Babu and Singh [10] proved such a representation under an exponentially fast decay
of the strong mixing coe�cients, this was weakened by Yoshihara [99] and Sun [88]
to a polynomial decay of the strong mixing coe�cients. We will obtain a improved
version of their results as a special case of our Theorem 5.3.1. Coeurjolly [23] in-
vestigated the Bahadur representation for Gaussian processes. Dutta and Sen [40]
considered autoregressive processes, Hesse [48], Wu [96] and Kulik [64] established
a Bahadur representation for linear processes and Kulik [65] for GARCH processes.
Both linear processes and GARCH processes can be treaded as near epoch dependent
sequences and are thus included in Theorem 5.3.1.
We are interested in the empirical U -quantile, i.e. the p-quantile of the sample

(g (Xi, Xj))1≤i<j≤n for a measurable, symmetric kernel g, which can be expressed as
the generalized inverse of the empirical U -distibution function Un:

De�nition 5.1.1. Let h : R × R × R → R be a kernel function and U the U -
distribution function. Then

tp = U−1(p) = inf{t|U(t) ≥ p}
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5 U -Quantiles

is called p-U -quantil and

U−1n (p) = inf{t|Un(t) ≥ p}

empirical p-U -quantile, where Un is the empirical U -distibution function.

Let the U -distribution function U (t) := P [h (X, Y, t)] be di�erentiable in tp with
u (tp) := U ′ (tp) > 0. Similarly to a sample quantile, U−1n (p) can be analyzed with
the help of a generalized Bahadur respresentation

U−1n (p) = tp +
U (tp)− Un (tp)

u (tp)
+Rn.

For the special case of the Hodges-Lehmann estimator of independent data, Geert-
sema [42] established a generalized Bahadur representation with Rn = O(n−

3
4 log n)

almost surely. For general U -quantiles, Dehling et al. [29] and Choudhury and Ser-
�ing [22] improved the rate to Rn = O(n−

3
4 (log n)

3
4 ). Arcones [5] proved the exact

order Rn = O(n−
3
4 (log log n)

3
4 ) as for sample quantiles. Let us give some examples:

Example 5.1.2 (Hodges-Lehmann estimator). Let h (x, y, t) = 1{ 1
2
(x+y)≤t}. The

0.5-U -quantil is the Hodges-Lehmann estimator for location [51]. Note that

sup
‖(x,y)−(X,Y )‖≤ε

∣∣∣1{ 1
2
(x+y)≤t} − 1{ 1

2
(X+Y )≤t}

∣∣∣ =

1 if X+Y
2
∈
(
t− ε√

2
, t+ ε√

2

]
0 else

If X1 has a bounded density, then the density f 1
2
(X+Y ) of

1
2

(X + Y ) is also bounded,
so

E

[
sup

‖(x,y)−(X,Y )‖≤ε
|h (x, y)− h (X, Y )|

]

≤ P

[
X + Y

2
∈
(
t− ε√

2
, t+

ε√
2

]]
≤
(√

2 sup
x∈R

f 1
2
(X+Y )(x)

)
· ε

and the kernel function h (x, y, t) = 1{ 1
2
(x+y)≤t} satis�es the uniform variation condi-

tion on R.

Example 5.1.3 (Qn estimator of scale). Let h (x, y, t) = 1{|x−y|≤t}. When the 0.25-
U -quantile is the Qn estimator of scale proposed by Rousseeuw and Croux [79]. If
X1 has a bounded density, then with similar arguments as for the Hodges-Lehmann-
estimator, the kernel function h (x, y, t) = 1{|x−y|≤t} satis�es the uniform variation
condition.

66



5.2 On the Local Behaviour of the Empirical Distribution Function

5.2 On the Local Behaviour of the Empirical

Distribution Function

Lemma 5.2.1. Let h1 : R × R → R be a non-negative, bounded, measurable func-

tion which is non-decreasing in the second argument, let F (t) := E [h1 (X1, t)] be

di�erentiable in tp ∈ R with F ′ (tp) = f (tp) > 0 and

|F (t)− F (tp)− f (tp) (t− tp)| = o
(
|t− tp|

3
2

)
as t→ tp.

Assume that one of the following two conditions holds:

1. (Xn)n∈Z is strongly mixing with α (n) = O (n−α) for some α ≥ 3. Let γ := α−2
α
.

2. (Xn)n∈Z is a near epoch dependent functional on an absolutely regular pro-

cess (Zn)n∈Z with mixing coe�cients (β(n))n∈N and approximation constants

(an)n∈N, such that β(n) =
(
n−β

)
and an =

(
n−(β+3)

)
for some β > 3. Let g

satisfy the variation condition uniformly in some neighbourhood of tp and let

γ := β−3
β+1

.

Then for Fn (t) := 1
n

∑n
i=1 h1 (Xi, t), p = F (tp) and any constant C > 0

sup
|t−tp|≤C

√
log logn

n

|Fn (t)− F (t)− Fn (tp) + F (tp)| = o
(
n−

5
8
− 1

8
γ(log n)

3
4 (log log n)

1
2

)
almost surely as n→∞.

Proof. Let cn = n−
5
8
− 1

8
γ(log n)

3
4 (log log n)

1
2 . We �rst prove that

∞∑
l=0

P

 max
2l≤n<2l+1

1

cn
sup

|t−tp|≤C
√

log l

2l

(Fn (t)− Fn (tp)− F (t) + F (tp)) > ε


≤ C

∞∑
l=0

1

c4
2l

E

 max
2l≤n<2l+1

sup
|t−tp|≤C

√
log l

2l

(Fn (t)− Fn (tp)− F (t) + F (tp))

4

<∞.

The statement of the Lemma will follow by the Borel-Cantelli lemma. We set d2l =(
log l
2l

) 3
4 and dn = d2l for 2l ≤ n < 2l+1. Let k ∈ Z. As Fn, F are non-decreasing in t,

we have for any t ∈ [tp + kdn, tp + (k + 1)dn] that

|Fn (t)− Fn (tp)− F (t) + F (tp)|
≤max {|Fn (tp + kdn)− Fn (tp)− F (t) + F (tp)| ,

|Fn (tp + (k + 1)dn)− Fn (tp)− F (tp) + F (tp)|}
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5 U -Quantiles

≤max {|Fn (tp + kdn)− Fn (tp)− F (tp + kdn) + F (tp)| ,
|Fn (tp + (k + 1)dn)− Fn (tp)− F (tp + (k + 1)dn) + F (tp)|}

+ |F (tp + (k + 1)dn)− F (tp + kdn)| .

It follows that

sup
|t−tp|≤C

√
log l

2l

(Fn (t)− Fn (tp)− F (t) + F (tp))

≤ max
|k|≤C(2l log l)

1
4

(Fn (tp + dnk)− Fn (tp)− F (tp + dnk) + F (tp))

+ max
|k|≤C(2l log l)

1
4

|F (tp + (k + 1)dn)− F (tp + kdn)| .

From the di�erentiability condition in our theorem, we conclude that

max
|k|≤C(2l log l)

1
4

|F (tp + (k + 1)dn)− F (tp + kdn)| ≤ f(tp)dn + o

(
log

3
4 l

2
3
4
l

)
= o (cn) .

Furthermore, we have that for all k1, k2 ≤ C
(
2l log l

) 1
4

|F (tp + dnk1)− F (tp + dnk2)| = f (tp) |k1 − k2| dn + o

(
log

3
4 l

2
3
4
l

)
≤ C |k1 − k2| dn.

So by Lemma 4.2.1 (under mixing Condition 1.) or Lemma 4.2.2 (under mixing
Condition 2.)

E (Fn (tp + dnk1)− Fn (tp + dnk2)− F (tp + dnk1) + F (tp + dnk2))
4

≤ C
1

n2
(log n)2 |k1 − k2|1+γ d1+γn .

Note that we can represent the di�erences of the empirical distribution function as a
double sum

Fn (tp + dnk)− Fn (tp)− F (tp + dnk) + F (tp)

=
n∑
i=1

k∑
j=1

(h1(Xi, tp+jdn)−h1(Xi, tp+(j−1)dn)−F (tp+jdn)+F (tp+(j−1)dn)) ,
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5.3 Central Limit Theorem and Law of the Iterated Logarithm

so by Corollary 1 of Móricz [69], it then follows that

1

c4
2l

E

 max
2l≤n<2l+1

max
|k|≤C(2l log l)

1
4

(Fn (tp + dnk)− Fn (tp)− F (tp + dnk) + F (tp))

4

≤ C
1

c4
2l

E

(
Fn

(
tp + C

√
log log n

n

)
− Fn

(
tp − C

√
log log n

n

)

−F

(
tp + C

√
log log n

n

)
+ F

(
tp − C

√
log log n

n

))4

≤ C
2

5+γ
2
l

l3 (log l)2
l2

22l

(log l)
1+γ
2

2
1+γ
2
l

= C
1

l (log l)
3−γ
2

.

As γ < 1, this quantities are summable and by the Markov and Chebyshev inequality,
the proof is completed.

5.3 Central Limit Theorem and Law of the Iterated

Logarithm

Before investigating the asymptotic behaviour of U -quantiles, we will investigate the
rate of convergence of the remainder term in the Bahadur representation. The fol-
lowing theorem can also be found in Wendler [93]:

Theorem 5.3.1. Let h : R × R × R → R be a kernel function that satis�es the

uniform variation condition in some neighbourhood of tp. Let U (t) := E [h (X, Y, t)]

be di�erentiable in tp ∈ R with U ′ (tp) = u (tp) > 0 and

|U (t)− U (tp)− u (tp) (t− tp)| = o
(
|t− tp|

3
2

)
as t→ tp.

Assume that one of the following two conditions holds:

1. ‖Xn‖1 < ∞ and (Xn)n∈Z is strongly mixing and the mixing coe�cients satisfy

α (n) = O (n−α) for some α ≥ 5. Le γ := β−2
β
.

2. (Xn)n∈Z is a near epoch dependent functional of an absolutely regular pro-

cess (Zn)n∈Z with mixing coe�cients (β(n))n∈N and approximation constants

(an)n∈N, such that β(n) =
(
n−β

)
and an =

(
n−(β+3)

)
for some β > 3. Let

γ := β−3
β+1

.
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5 U -Quantiles

Then for Un (t) := 2
n(n−1)

∑
1≤i<j≤n h (Xi, Xj, t), p = U (tp) and any constant C > 0

sup
|t−tp|≤C

√
log logn

n

|Un (t)− U (t)− Un (tp) + p| = o
(
n−

5
8
− 1

8
γ(log n)

3
4 (log log n)

1
2

)
Rn := U−1n (p)− tp −

p− Un (tp)

u (tp)
= o

(
n−

5
8
− 1

8
γ(log n)

3
4 (log log n)

1
2

)
almost surely as n→∞.

Proof. To prove the �rst statement of the theorem, we use the Hoe�ding decomposi-
tion

Un (t) = U (t) +
2

n

n∑
i=1

h1 (Xi, t) +
2

n (n− 1)

∑
1≤i<j≤n

h2 (Xi, Xj, t) .

As above, we set cn = n−
5
8
− 1

8
γ(log n)

3
4 (log log n)

1
2 , d2l =

(
log l
2l

) 3
4 and dn = d2l for

2l ≤ n < 2l+1. We get

sup
|t−tp|≤C

√
log l

2l

|Un (t)− Un (tp)− U (t) + U (tp)|

≤ max
|k|≤C(2l log l)

1
4

|Un (tp + dnk)− Un (tp)− U (tp + dnk) + U (tp)|

+ max
|k|≤C(2l log l)

1
4

|U (tp + dn(k + 1))− U (tp + dnk)|

and
max

|k|≤C(2l log l)
1
4

|U (tp + dn(k + 1))− U (tp + dnk)| = o (cn) .

By Lemma 3.1.14 we have that h1 satis�es the variation condition uniformly in
some neighbourhood of tp. Applying Lemma 5.2.1, we obtain

max
|k|≤C(2l log l)

1
4

∣∣∣∣∣ 2n
n∑
i=1

h1 (Xi, tp + kdn)− 2

n

n∑
i=1

h1 (Xi, tp)− U (tp + dnk) + U (tp)

∣∣∣∣∣
= o (cn)

almost surely. It remains to show that

max
|k|≤C(2l log l)

1
4

|Qn (tp + dnk)−Qn (tp)| = o
(
n2cn

)
almost surely with Qn (t) :=

∑
1≤i<j≤n h2 (Xi, Xj, t). We �rst consider mixing as-

sumption 1. (strong mixing) and concentrate on the case α < 6. In the case α ≥ 6,
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5.3 Central Limit Theorem and Law of the Iterated Logarithm

a similar calculation can be done. Recall that for any random variables Y1, . . . , Ym:
E (maxi=1,...,m |Yi|)2 ≤

∑m
i=1EY

2
i and therefore

E

 max
2l−1≤n<2l

max
|k|≤C(2l log l)

1
4

1

2l−1cn
|Qn (tp+dnk)−Qn (tp)|

2

≤ 1

22(l−1)c2
2l

E

 max
|k|≤C(2l log l)

1
4

l∑
d=1

max
i=1,...,2l−d

(
Q2(l−1)+i2(d−1) (tp+dnk)−Q2(l−1)+i2(d−1) (tp)

)2

≤ 1

22(l−1)c2
2l

∑
|k|≤C(2l log l)

1
4

l
l∑

d=1

2l−d∑
i=1

E
(
Q2(l−1)+i2(d−1) (tp+dnk)−Q2(l−1)+i2(d−1) (tp)

)2

≤ 1

22(l−1)c2
2l

∑
|k|≤C(2l log l)

1
4

l2
2l∑

i1,i2,i3,i4=1

|E [(h2 (Xi1 , Xi2 , tp+dnk)−h2 (Xi1 , Xi2 , tp)) (h2 (Xi3 , Xi4 , tp+dnk)−h2 (Xi3 , Xi4 , tp))]| ,

where we used the triangular inequality in the last step. By means of Lemma 3.2.3
and 3.2.5, we arrive at

E

 max
2l−1≤n<2l

max
|k|≤C(2l log l)

1
4

1

2l−1cn
|Qn (tp + dnk)−Qn (tp)|

2

≤ C

24lc2
2l

(
2l

log l

) 1
4

l222l

2l∑
i=1

iα
1
3 (i) ≤ C2l(

3
2
+ 1

4
γ)

24ll
3
2 (log l)

5
4

l22l(4−
α
3
) = C

2l(
3
2
+ 1

4
γ−α

3
)l

1
2

(log l)
5
4

.

As α > 5, we have that 3
2

+ 1
4
γ − 1

3
α = −4α2+21α−6

12α
< 0 and thus the second moments

are summable. The almost sure convergence follows by the Chebyshev inequality and
the Borel-Cantelli lemma, so the �rst statement of the theorem is proved.
Under Condition 2. (near epoch dependence on absolutely regular sequences), we

have by Lemma 3.2.4 and
∑∞

i=1 iβ(i) <∞,
∑∞

i=1 iAi <∞

E

 max
2l−1≤n<2l

max
|k|≤C(2l log l)

1
4

1

2l−1cn
|Qn (tp + dnk)−Qn (tp)|

2

≤ C

24lc2n

(
2l

log l

) 1
4

l222l

2l∑
i=1

i

(
β(
i

3
) + A i

3

)
≤ C2l(

3
2
+ 1

4
γ)

24ll
3
2 (log l)

5
4

l222l =
Cl

1
2

2l(
1
2
− 1

4
γ)(log l)

5
4

.

Since γ ∈ (0, 1), we have that 1
2
− 1

4
γ > 0 and the second moments are summable. By
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5 U -Quantiles

the Chebyshev inequality and the Borel-Cantelli lemma, we have now proved that

sup
|t−tp|≤C

√
log l

2l

|Un (t)− Un (tp)− U (t) + U (tp)|

= max
|k|≤C(2l log l)

1
4

|Un (tp + dnk)− Un (tp)− U (tp + dnk) + U (tp)|+ o(cn) = o(cn)

almost surely. To prove that

Rn := U−1n (p)− tp +
Un (tp)− U (tp)

u (tp)
= o

(
n−

5
8
− 1

8
γ(log n)

3
4 (log log n)

1
2

)
,

let without loss of generality u (tp) = 1, otherwise replacing h(x, y, t) by h
(
x, y, t

u(tp)

)
.

We represent Rn with the help of the inverse of the local empirical U -process Zn with

Zn (x) := (Un (·+ tp)− Un (tp))
−1 (x)− x = inf

{
s
∣∣Un (s+ tp)− Un (tp) ≤ x

}
− x

= inf
{
s
∣∣Un (s) ≤ x+ Un (tp)

}
− x− tp = U−1n (x+ Un (tp))− x− tp.

So we have
Rn = Zn (U (tp)− Un (tp)) .

By Theorem 3.3.3

lim sup
n→∞

±
√

n

log log n
(Un (tp)− U (tp)) = C,

and by the �rst statement of the theorem and the di�erentiability condition we have
that

sup
|x|≤C
√

log logn
n

|Un (x+ tp)− Un (tp)− x|

≤ sup
|x|≤C
√

log logn
n

|Un (x+ tp)− U (x+ tp)− Un (tp) + U (tp)|

+ sup
|x|≤C
√

log logn
n

|U (x+ tp)− U (tp)− x| = o (cn) .

So by Theorem 1 of Vervaat [90]

sup
|x|≤C
√

log logn
n

∣∣U−1n (x+ tp)− U−1n (tp)− x
∣∣ = o (cn) .

|Rn| ≤ sup
|x|≤C
√

log logn
n

|Zn (x)| = o (cn) ,

so the second statement of the Theorem is proved.
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5.3 Central Limit Theorem and Law of the Iterated Logarithm

With the kernel function h(x, y, t) = 1
2
(1{x≤t} + 1{x≤t}), this theorem includes the

ordinary distribution function Fn(t) := 1
n

∑n
i=1 1{x≤t} as a special case. For this

kernel function, the degenerate part of the empirical U -distribution function does
not exists and if the sequence (Xn)n∈N is strongly mixing, the variation condition
is not needed. Furthermore, the decay of mixing coe�cients α(n) = O(n−α) for an
α > 3 is fast enough. This is an improvement of a Theorem by Sun [88], as he
assumes a faster decay of the mixing coe�cients, namely α > 10, and obtains the
rate Rn = o(n−

3
4
+δ log n) for any δ > 11

4(α+1)
. Additional, his proof demands the

distribution function to be di�erentiable twice.
Yoshihara states the rate Rn = o(n−

3
4 log n) a.s., but a careful reading shows that

there is a mistake in Line (20) of his paper. Instead of

E

∣∣∣∣∣
n∑
j=1

l∑
i=1

ζj (θ + (i− 1)qk, θ + iqk)

∣∣∣∣∣
4

≤ C(nlqk)
1+γ

with ζi(s, t) = 1{Xi≤t} − 1{Xi≤s} − (F (t)− F (s)), the inequality should be

E

∣∣∣∣∣
n∑
j=1

l∑
i=1

ζj (θ + (i− 1)qk, θ + iqk)

∣∣∣∣∣
4

≤ Cn2(lqk)
1+γ.

If this line is corrected, his proof leads to the rate Rn = o(n−
5
8
− 1

8
γ(log n)

1
4 (log log n)

1
2 )

with γ ≤ 1
5
, so our theorem is also an improvement.

For a fast decay of the strong mixing coe�cient (α→∞), our rate becomes close
to the optimal rate proved by Kiefer [58]. As the empirical distribution function
and empirical sample quantiles are included as a special case, we cannot obtain a
better rate. However, for some kernel functions and the associated U -quantiles, the
empirical U -distribution function might be smoother and the remainder term in the
Bahadur representation might converge faster:

Example 5.3.2. We consider again the Hodges-Lehmann estimator associated with
the kernel function h (x, y, t) = 1{ 1

2
(x+y)≤t}. Let (Xn)n∈N be a sequence of indepen-

dent standard normal random variables. We will show that

Rn := U−1n (p)− tp −
U (tp)− Un (tp)

u (tp)
= o

(
n−1 log2 n

)
almost surely. We have that h1(x, t) = P (Y ≤ 2t−x)−P (X+Y ≤ 2t) = Φ(2t−x)−
Φ(
√

2t) is Lipschitz continuous in t uniformly for all x, where Φ is the distribution
function of a standard normal random variable, so

E

(
n∑
i=1

h1 (Xi, s)− h1 (Xi, t)− E [h1 (X1, s)− h1 (Xi, t)]

)4

≤ Cn2|s− t|4.
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5 U -Quantiles

Using this moment inequality instead of Lemma 4.2.1, we can prove Lemma 5.2.1
with γ = 3 and arrive at

sup
|t−tp|≤C

√
log logn

n

|Fn (t)− F (t)− Fn (tp) + F (tp)| = o
(
n−3 log2 n

)
for Fn (t) := 1

n

∑n
i=1 h1 (Xi, t) almost surely as n→∞. Furthermore by the Lipschitz

continuity of the U -distribution function, E [h(Xi, Xj, t)− h(Xi, Xj, s)] ≤ C|s − t|,
so E [h2(Xi, Xj, t)− h2(Xi, Xj, s)] ≤ C|s − t| and consequently we have for the de-
generate part

E

(
Qn(tp +

k

n
)−Qn(tp)

)2

≤ Cn2 k

n

(the summands of Qn(tp + k
n
)−Qn(tp) are unkorrelated). With the same arguments

as in the proof of our Theorem 5.3.1, we �nally get

E

 max
2l−1≤n<2l

max
|k|≤C(2l log l)

1
2

1

n log2 n

∣∣∣∣Qn

(
tp +

k

2l

)
−Qn (tp)

∣∣∣∣
2

≤ C
1

22ll4
l2(2l log l)

1
2 22l

(
log l

2l

) 1
2

= C
log l

l2

and as this bounds are summable, we can conclude as before that Rn = o
(
n−1 log2 n

)
almost surely.

For any kernel functions satisfying the conditions of Theorem 5.3.1, we have that

Rn = o
(
n−

1
2

)
, so if we express the empirical U -quantile as

U−1n (p) = tp +
U (tp)− Un (tp)

u (tp)
+Rn,

we can applying Theorem 3.3.1 or 3.3.3 to the U -statistic Un(tp) to obtain

Corollary 5.3.3. Under the assumptions of Theorem 5.3.1 it holds that

√
n
(
U−1n (p)− tp

) D−→ N
(
0, σ2

)
with

σ2 =
4

u2(tp)

(
Var [h1 (X1, tp)] + 2

∞∑
k=2

Cov [h1 (X1, tp) , h1 (Xk, tp)]

)
.

Corollary 5.3.4. Under the assumptions of Theorem 5.3.1 it holds that

lim sup
n→∞

±
√

n

2 log log n

(
U−1n (p)− tp

)
= σ.
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6 U-Quantile-Processes

6.1 De�nition and Applications

In this �nal chapter, we will study not a single U -quantile, but the empirical U -
quantile process (U−1n (p))p∈I under dependence (where I is some intervall de�ned
later). We will combine methods from Chapter 4 and 5 to do so, developing a uniform
version of the generalized Bahadur representation. There are other methods to deduce
functional limit theorems for quantile processes from the limit behaviour of empirical
processes which also could be generalized to U -quantiles, in particular the functional
δ-method, see for example the book of van der Vaart and Wellner [89], page 387.
Lévy-Leduc et al. [67] used this method for U -quantiles of long range dependent
data. In a very clearly written paper, Vervaat [90] showed that the convergence of
inverted processes can be derived with easy analytical arguments, Doss and Gill [37]
gave a more general version of his arguments.
The Bahadur representation has the disadvantage that additional calculations are

needed, but it gives a deeper inside into the quality of the approximation of the U -
quantile process by the empirical U -process. We will examine the rate of convergence
of supp∈I Rn(p) and use the approximation of the empirical U -process by a Gaussian
process. The assumptions on the dependence of the random variables will be the
same as in Chapter 4. However, as we divide by u in the Bahadur representation, we
have to assume that this derivative behaves nicely. The densitiy of a random variable
can not be bounded away from 0 on the whole real line, as it must integrate to 1, and
the same problem occurs for the derivative of the U -distribution function, so we limit
our investigation to some intervall where the this derivative is bounded away from 0.
The Bahadur representation for the sample quantile process goes back to Kiefer

[58] under independence, Babu and Singh [10] proved such an representation for
mixing data and Kulik [64] and Wu [96] for linear processes, but there seem to be no
such results for the U -quantile process. Csörg® and Révész [24] established a strong
invariance principle for the sample quantile process under independence, we will give a
strong invariance principle for the U -quantile process under dependence. Additionally
to the empirical U -quantile process, we are interested in linear combination of U -
quantiles, which can be expressed as linear functional of the empirical U -quantile-
process.
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6 U -Quantile-Processes

De�nition 6.1.1. Let be p1, . . . , pd ∈ I, b1, . . . , bd ∈ R and J a bounded function
that is continuous a.e. and vanishes outside of I. We call a statistic of the form

Tn = T
(
U−1n

)
:=

∫
I

J (p)U−1n (p)dp+
d∑
j=1

bjU
−1
n (pj)

=

n(n−1)
2∑
i=1

∫ 2i
n(n−1)

2(i−1)
n(n−1)

J (t) dt · U−1n
(

2i

n (n− 1)

)
+

d∑
j=1

bjU
−1
n (pj)

generalized linear statistic (GL-statistic).

This generalization of L-statistics was introduced by Ser�ing [85]. U -statistics,
U -quantiles and L-statistics can be written as GL-statistics (though this might be
somewhat arti�cial). For a U -statistic, just take h(x, y, t) = 1{g(x,y)≤t} and J = 1

(this only works if we can consider the interval I = [0, 1]). The following example
shows how to deal with an ordinary L-statistic.

Example 6.1.2. Let h(x, y, t) := 1
2

(
1{x≤t} + 1{y≤t}

)
, p1 = 0.25, p2 = 0.75, b1 = −1,

b2 = 1, and J = 0. Then a short calculation shows that the related GL-statistic is

Tn = F−1n (0.75)− F−1n (0.25),

where F−1n denotes the empirical sample quantile function. This is the well-known
inter quartile distance, a robust estimator of scale with 25% breakdown point.

Example 6.1.3. Let h(x, y, t) := 1
2

(
1{x≤t} + 1{y≤t}

)
and J(x) = 1{x∈[0.25,0.75]}. This

leads to the 25%-trimmed mean as a GL-statistic.

Example 6.1.4. Let h(x, y, t) := 1{ 1
2
(x−y)2≤t}, p1 = 0.75, b1 = 0.25 and J(x) =

1{x∈[0,0.75]}. The related GL-statistic is called winsorized variance, a robust estimator
of scale with 13% breakdown point.

The uniform variation condition also holds for this example, because h(x, y, t) =

1{ 1
2
(x−y)2≤t} = 1{|x−y|≤√2t} and this is the kernel function of Example 5.1.3.

6.2 On the Continuity of the Empirical U-Process

Lemma 6.2.1. Let be F a non-decreasing function, c, l > 0 constants and [C1, C2] ⊂
R. If for all t, t′ ∈ [C1, C2] with |t− t′| ≤ l + 2c

|F (t)− F (t′)− (t− t′)| ≤ c,

then for all p, p′ ∈ R with |p− p′| ≤ l and F−1(p), F−1(p′) ∈ (C1 + 2c+ l, C2− 2c− l)

|F−1(p)− F−1(p′)− (p− p′)| ≤ c

where F−1(p) := inf
{
t
∣∣F (t) ≥ p

}
is the generalized inverse.
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6.2 On the Continuity of the Empirical U -Process

Proof. Without loss of generality we assume that p < p′. Let be ε ∈ (0, c). By our
assumptions

F
(
F−1(p) + (p′ − p) + c+ ε

)
≥ F

(
F−1(p) + ε

)
+ (p′ − p) + c− c

≥ p+ (p′ − p) = p′.

By the de�nition of F−1, it follows that

F−1(p′) = inf
{
t
∣∣F (t) ≥ p′

}
≤ F−1(p) + (p′ − p) + c+ ε.

So taking the limit ε→ 0, we obtain

F−1(p′) ≤ F−1(p) + (p′ − p) + c.

On the other hand

F
(
F−1(p) + (p′ − p)− c− ε

)
≤ F

(
F−1(p)− ε

)
+ (p′ − p)− c+ c

≤ p+ (p′ − p) = p′.

So we have that
F−1(p′) ≥ F−1(p) + (p′ − p)− c− ε,

and hence F−1(p′) ≥ F−1(p)+(p′−p)− c. Combining the upper and lower inequality
for F−1(p′), we conclude that |F−1(p)− F−1(p′)− (p− p′)| ≤ c.

Lemma 6.2.2. Let h be a kernel function that satis�es the uniform variation con-

dition such that U di�erentiable on an interval [C1, C2] with 0 < inft∈[C1,C2] u(t) ≤
supt∈[C1,C2] u(t) <∞ (u(t) = U ′(t)) and

sup
t,t′∈[C1,C2]: |t−t′|≤x

|U(t)− U(t′)− u(t)(t− t′)| = O
(
x

5
4

)
and one of the following two mixing conditions is satis�ed:

1. (Xn)n∈N is strongly mixing with mixing coe�cients α(n) = O(n−α) for α ≥ 8

and E|Xi|ρ <∞ for a ρ > 1
4
.

2. (Xn)n∈N is near epoch dependent on an absolutely regular process with mixing

coe�cients β(n) = O(n−β) for β ≥ 8 with approximation constants an = O(n−a)

for a = max {β + 3, 12}.

Then for any constant C > 0

sup
t,t′∈[C1,C2]:

|t−t′|≤C
√

log logn
n

|Un(t)− Un(t′)− u(t)(t− t′)| = o(n−
1
2
− γ

8 log n)

with γ as in Lemma 4.2.1 respectively 4.2.2.
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6 U -Quantile-Processes

Proof. As a consequence of the di�erentiability assumption and γ < 1

sup
t,t′∈[C1,C2]:

|t−t′|≤C
√

log logn
n

|U(t)− U(t′)− u(t)(t− t′)| = o(n−
1
2
− γ

8 log n),

so it su�ces to show that

Kn := sup
t,t′∈[C1,C2]:

|t−t′|≤C
√

log logn
n

|Un(t)− Un(t′)− (U(t)− U(t′))| = o(n−
1
2
− γ

8 log n).

For l ∈ N choose t1,l, . . . , tk−1,l with k = kl = O
(√

2l

log l

)
, C1 = t0,l < t1,l < . . . <

tk−1,l < tk,l = C2 and
√

log l
2l
≤ U(tr,l)− U(tr−1,l) ≤ 2

√
log l
2l
. Clearly

Kn ≤ 2 max
r=1,...,k

sup
t,t′∈[tr−1,l,tr,l]

|Un(t)− Un(t′)− (U(t)− U(t′))|

≤ 4 max
r=1,...,k

sup
t∈[tr−1,l,tr,l]

|Un(t)− Un(tr−1,l)− (U(t)− U(tr−1,l))| .

Now choose m = ml ∈ N and for r = 1, . . . , k and r? = 1, . . . ,m − 1 real numbers
t?r?,r,l, such that tr−1,l = t?0,r,l < t?1,r,l < . . . < t?m−1,r,l < t?m,r,l = tr,l and 2−(

1
2
+ γ

8
)l ≤

U(t?r?,r,l) − U(t?r?−1,r,l) ≤ 2 · 2−( 12+ γ
8
)l. As Un and U are non-decreasing, we have for

t ∈ (t?r?−1,r,l, t
?
r?,r,l) and n = 2l, . . . , 2l+1 − 1

|Un(t)− Un(tr−1,l)− (U(t)− U(tr−1,l))|
≤max

{∣∣Un(t?r?,r,l)− Un(tr−1,l)− (U(t)− U(tr−1,l))
∣∣ ,∣∣Un(t?r?−1,r,l)− Un(tr−1,l)− (U(t)− U(tr−1,l))

∣∣}
≤max

{∣∣Un(t?r?,r,l)− Un(tr−1,l)− (U(t?r?,r,l)− U(tr−1,l))
∣∣ ,∣∣Un(t?r?−1,r,l)− Un(tr−1,l)− (U(t?r?−1,r,l)− U(tr−1,l))
∣∣}+ |U(t?r?,r,l)− U(t?r?−1,r,l)|,

and consequently

Kn ≤ 4 max
r=1,...,k

max
r?=1,...,m

∣∣Un(t?r?,r,l)− Un(tr−1,l)− (U(t?r?,r,l)− U(tr−1,l))
∣∣

+ 4 max
r=1,...,k

max
r?=1,...,m

|U(t?r?,r,l)− U(t?r?−1,r,l)|

≤ 8 max
r=1,...,k

max
r?=1,...,m

∣∣∣∣∣ 1n ∑
1≤i≤n

h1(Xi, t
?
r?,r,l)−

1

n

∑
1≤i≤n

h1(Xi, tr−1,l)

∣∣∣∣∣
+ 4 max

r=1,...,k
max

r?=1,...,m

∣∣∣∣∣ 2

n(n− 1)

( ∑
1≤i<j≤n

h2(Xi, Xj, t
?
r?,r,l)−

∑
1≤i<j≤n

h2(Xi, Xj, tr−1,l)

)∣∣∣∣∣
+ 4 max

r=1,...,k
max

r?=1,...,m
|U(t?r?,r,l)− U(t?r?−1,r,l)|.
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6.2 On the Continuity of the Empirical U -Process

We will treat these three summands seperately. From our choice of t?r?,r,l, we obtain

max
r=1,...,k

max
r?=1,...,m

|U(t?r?,r,l)− U(t?r?−1,r,l)| ≤ 2 · 2−(
1
2
+ γ

8
)l = o(n−

1
2
− γ

8 log n).

With the help of Proposition 4.2.3, it follows for the degenerate part that

max
r=1,...,k

max
r?=1,...,m

∣∣∣∣∣ 2

n(n− 1)

( ∑
1≤i<j≤n

h2(Xi, Xj, t
?
r?,r,l)−

∑
1≤i<j≤n

h2(Xi, Xj, tr−1,l)

)∣∣∣∣∣
≤ 4

n(n− 1)
sup
t∈R

∣∣∣∣∣ ∑
1≤i<j≤n

h2 (Xi, Xj, t)

∣∣∣∣∣ = o
(
n−

1
2
− γ

8

)
.

Furthermore, we have for the linear part by Lemma 4.2.1 respecitvely 4.2.2 and Corol-
lary 1 of Móricz [69] (which gives moment bounds for the maximum other multidi-
mensional partial sums)

E

( max
n=2l,...,2l+1−1

max
r=1,...,k

max
r?=1,...,m

∣∣∣∣∣
n∑
i=1

h1(Xi, t
?
r?−1,r,l)−

n∑
i=1

h1(Xi, tr−1,l)

∣∣∣∣∣
)4


≤
k∑
r=1

E

( max
n=2l,...,2l+1−1

max
m1=1,...,m

∣∣∣∣∣
n∑
i=1

m1∑
r?=1

(
h1(Xi, t

?
r?,r,l)− h1(Xi, t

?
r?−1,r,l)

)∣∣∣∣∣
)4


≤ Ck22ll2

(√
log l

2l

)1+γ

≤ Cl2(log l)
γ
2 2(2− γ

2
)l,

as k = O(
√

2l

log l
). So we can conclude that for any ε > 0

∞∑
l=1

P

[
max

n=2l,...,2l+1−1
max
r=1,...,k

max
r?=1,...,m

∣∣∣∣∣
n∑
i=1

(
h1(Xi, t

?
r?−1,r,l)− h1(Xi, tr−1,l)

)∣∣∣∣∣ ≥ ε2( 1
2
− γ

8
)ll

]

≤ C
∞∑
l=1

2(2− γ
2
)ll2(log l)

γ
2

ε4l42(2− γ
2
)l

= C
∞∑
l=1

(log l)
γ
2

l2
<∞.

With the Borel Cantelli lemma, it follows that

max
r=1,...,k

max
r?=1,...,m

∣∣∣∣∣ ∑
1≤i≤n

h1(Xi, t
?
r?,r,l)−

∑
1≤i≤n

h1(Xi, tr−1,l)

∣∣∣∣∣ = o(n
1
2
− γ

8 log n)

almost surely and �nally

max
r=1,...,k

max
r?=1,...,m

∣∣∣∣∣ 1n ∑
1≤i≤n

h1(Xi, t
?
r?,r,l)−

1

n

∑
1≤i≤n

h1(Xi, tr−1,l)

∣∣∣∣∣ = o(n−
1
2
− γ

8 log n),

so all three summands converge with the required rate and the proof is completed.
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6 U -Quantile-Processes

6.3 Strong Invariance Principles

Recall that the remainder term in the generalized Bahadur representation is de�ned
as

Rn(p) = U−1n (p)− tp −
p− Un (tp)

u (tp)

and that we write tp := U−1(p). We set U−10 (p) := 0 as it is not possible to �nd a
generalized inverse of U0 = 0.

Theorem 6.3.1. Let h be a kernel function that satis�es the uniform variation con-

dition such that U di�erentiable on an interval [C1, C2] with 0 < inft∈[C1,C2] u(t) ≤
supt∈[C1,C2] u(t) <∞ (u(t) = U ′(t)) and

sup
t,t′∈[C1,C2]: |t−t′|≤x

|U(t)− U(t′)− u(t)(t− t′)| = O
(
x

5
4

)
and one of the following two mixing conditions is satis�ed:

1. (Xn)n∈N is strongly mixing with mixing coe�cients α(n) = O(n−α) for α ≥ 8

and E|Xi|ρ <∞ for a ρ > 1
4
.

2. (Xn)n∈N is near epoch dependent on an absolutely regular process with mixing

coe�cients β(n) = O(n−β) for β ≥ 8 with approximation constants an = O(n−a)

for a = max {β + 3, 12}.

Then

sup
p∈I
s∈[0,1]

bnsc√
n
|Rbnsc(p)| = o(n−

γ
8 log n)

almost surely with I = [C̃1, C̃2] with U(C1) < C̃1 < C̃2 < U(C2), γ := α−2
α

(under

strong mixing) respectively γ := β−3
β+1

(under near epoch dependence on an absolutely

regular process).

Note that for a fast decay of the mixing coe�cients, the rate becomes close to
n−

1
8 , while the optimal rate for sample quantile process of independent data is

n−
1
4 (log n)

1
2 (log log n)

1
4 , see Kiefer [59].

Proof. To simplify the notation, we will, without loss of generality, assume that
U(p) = p = tp on the interval I. In the general case, one has to change the func-
tion h(x, y, t) to h(x, y, U−1(t)), as Eh(X, Y, U−1(p)) = U(U−1(p)) = p. For related
empirical U -process Un ◦ U−1, we have

Rn(p) = U−1n (p)− U−1(p)− p− Un(U−1(p))

u(tp)

=
1

u(tp)

(
(Un ◦ U−1)−1(p)− p− (p− Un ◦ U−1(p))

)
+ o((U−1n (p)− U−1(p))

5
4 ),
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6.3 Strong Invariance Principles

so Rn(p) is only blown up by a constant because of this transformation. If U(p) =

p = tp, then we can write Rn(p) as

Rn(p) = U−1n (p)− tp + Un(tp)− p
=
(
U−1n (p)− U−1n (Un(tp)) + Un(tp)− p

)
+
(
U−1n (Un(tp))− tp

)
.

Applying Lemma 6.2.2 and Lemma 6.2.1 with F = Un, c = n−
1
2
− γ

8 log n and l =

C
√

log logn
n

, we obtain

sup
p,p′∈I:

|p−p′|≤C
√

log logn
n

∣∣U−1n (p)− U−1n (p′)− (p− p′)
∣∣ = o(n−

1
2
− γ

8 log n)

almost surely. By Corollary 4.3.3 we have that supt∈[C1,C2] (Un(tp)− p) ≤ C
√

log logn
n

almost surely, it follows that

sup
p∈I

∣∣U−1n (p)− U−1n (Un(tp)) + Un(tp)− p
∣∣

≤ sup
p,p′∈I:

|p−p′|≤C
√

log logn
n

∣∣U−1n (p)− U−1n (p′)− (p− p′)
∣∣ = o(n−

1
2
− γ

8 log n)

almost surely. It remains to show the convergence of U−1n (Un(tp)) − tp. For every
ε > 0 by the de�nition of the generalized inverse, U−1n (Un(tp)) − tp > εn−

1
2
− γ

8 log n

only if Un(tp + εn−
1
2
− γ

8 log n) < Un(tp) and U−1n (Un(tp))− tp ≤ −εn−
1
2
− γ

8 log n only if
Un(tp − εn−

1
2
− γ

8 log n) ≥ Un(tp). So we can conclude that

P

[
sup
p∈I
|U−1n (Un(tp))− tp| > εn−

1
2
− γ

8 log n i.o.

]

≤ P

 sup
t∈[C1,C2−εn−

1
2−

γ
8 logn]

Un(t+ εn−
1
2
− γ

8 log n)− Un(t) ≤ 0 i.o.



≤ P

 sup
t,t′∈[C1,C2]

|t−t′|=εn−
1
2−

γ
8 logn

|Un(t)− Un(t′)− (U(t)− U(t′))| ≥ |U(t)− U(t′)| i.o.



≤ P

 sup
t,t′∈[C1,C2]

|t−t′|≤εn−
1
2−

γ
8 logn

|Un(t)−Un(t′)−(U(t)−U(t′))| ≥ ε log n

n
1
2
+ γ

8 inft∈[C1,C2] u(t)
i.o.


= 0,
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6 U -Quantile-Processes

where the last line is a consequence of Lemma 6.2.2. Now we have proved that
supp∈I |Rn(p)| = o(n−

1
2
− γ

8 log n), and can �nally conclude that

n
γ
8

log n
sup
p∈I
s∈[0,1]

bnsc√
n
|Rbnsc(p)|

≤ sup
n′≤
√
n

(
n′

n
)
1
2
− γ

8
log n′

log n

n′
1
2
+ γ

8

log n′
sup
p∈I
|Rn′(p)|+ sup√

n≤n′≤n

n′
1
2
+ γ

8

log n′
sup
p∈I
|Rn′(p)|

≤ Cn−
1
4
+ γ

16 sup
n′∈N

sup
p∈I
|Rn′(p)|+ sup

n′≥
√
n

n′
1
2
+ γ

8

log n′
sup
p∈I
|Rn′(p)| → 0.

Using the Bahadur representation, we can deduce the asymptotic behaviour of the
empirical U -quantile process from Theorem 4.3.1.

Theorem 6.3.2. Let h be a kernel function that satis�es the uniform variation con-

dition such that U di�erentiable on an interval [C1, C2] with 0 < inft∈[C1,C2] u(t) ≤
supt∈[C1,C2] u(t) <∞ (u(t) = U ′(t)) and

sup
t,t′∈[C1,C2]: |t−t′|≤x

|U(t)− U(t′)− u(t)(t− t′)| = O
(
x

5
4

)
and one of the following two mixing conditions is satis�ed:

1. (Xn)n∈N is strongly mixing with mixing coe�cients α(n) = O(n−α) for α ≥ 8

and E|Xi|ρ <∞ for a ρ > 1
4
.

2. (Xn)n∈N is near epoch dependent on an absolutely regular process with mixing

coe�cients β(n) = O(n−β) for β ≥ 8 with approximation constants an = O(n−a)

for a = max {β + 3, 12}.

Then there exists a centered Gaussian process (K ′(p, s))p∈I,s∈R (after enlarging the

probability space if necessary), where I is the interval introduced in Theorem 6.3.1,

with covariance function

EK ′(p, s)K ′(p′, s′) = min {s, s′} 1

u(tp)u(tp′)
Γ(tp, tp′)

such that

sup
p∈I
s∈[0,1]

1√
n

∣∣∣bnsc(U−1bnsc(p)− tp)−K ′(p, ns)∣∣∣ = O(log−
1

3840 n).
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6.3 Strong Invariance Principles

Proof. De�ne K ′(p, s) := − 1
u(tp)

K(tp, s), there K is the Gaussian process introduced
in Theorem 4.3.1. K ′ is then a Gaussian process with covariance function

EK ′(p, s)K ′(p′, s′) = min {s, s′} 1

u(tp)u(tp′)
Γ(tp, tp′)

and by Theorem 4.3.1 and Theorem 6.3.1

sup
p∈I
s∈[0,1]

1√
n

∣∣∣bnsc(U−1bnsc(p)− tp)−K ′(p, ns)∣∣∣
≤ sup

p∈I
s∈[0,1]

1√
n

∣∣∣∣bnsc(U−1bnsc(p)− tp − p− Un(tp)

u(tp)

∣∣∣∣
+ sup

p∈I
s∈[0,1]

1√
n

1

u(tp)

∣∣bnsc(Ubnsc(tp)− p)−K(tp, ns)
∣∣

≤ sup
p∈I
s∈[0,1]

bnsc√
n
|Rbnsc(p)|+

1

infp∈I u(tp)
sup
p∈I
s∈[0,1]

1√
n

∣∣bnsc(Ubnsc(tp)− p)−K(tp, ns)
∣∣

=O(log−
1

3840 n)

almost surely.

K ′ is a Gaussian process with independent increments in s direction, so we have
the following consequences:

Corollary 6.3.3. Under the assumptions of Theorem 6.3.2(
bnsc√
n

(U−1bnsc(p)− tp)
)
t∈R,s∈[0,1]

converges weakly in the space D(R×[0, 1]) of càdlàg functions (equipped with the supre-

mum norm) to the centered Gaussian process (K ′(p, s))p∈I,s∈R introduced in Theorem

6.3.2.

Corollary 6.3.4. Under the assumptions of Theorem 6.3.2, the sequence((
bnsc√

2n log log n
(U−1bnsc(p)− tp)

)
p∈I,s∈[0,1]

)
n∈N

is almost surely relatively compact in the space D(R × [0, 1]) of càdlàg functions

(equipped with the supremum norm) and the limit set is the unit ball UK′ of the

reproducing kernel Hilbert space K′ associated with the covariance function of the

process K ′.

83



6 U -Quantile-Processes

As GL-statistics are linear functionals of the empirical U -quantile process, we get
an approximation for Tn:

Theorem 6.3.5. Let be p1, . . . , pd ∈ I and J a bounded function that is continu-

ous a.e. and vanishes outside of I. Let h be a kernel function that satis�es the

uniform variation condition such that U di�erentiable on an interval [C1, C2] with

0 < inft∈[C1,C2] u(t) ≤ supt∈[C1,C2] u(t) <∞ (u(t) = U ′(t)) and

sup
t,t′∈[C1,C2]: |t−t′|≤x

|U(t)− U(t′)− u(t)(t− t′)| = O
(
x

5
4

)
.

and one of the following two mixing conditions is satis�ed:

1. (Xn)n∈N is strongly mixing with mixing coe�cients α(n) = O(n−α) for α ≥ 8

and E|Xi|ρ <∞ for a ρ > 1
4
.

2. (Xn)n∈N is near epoch dependent on an absolutely regular process with mixing

coe�cients β(n) = O(n−β) for β ≥ 8 with approximation constants an = O(n−a)

for a = max {β + 3, 12},

then there exists (after enlarging the probability space if necessary) a Brownian motion

B, such that for Tn de�ned in De�nition 6.1.1 and

σ2 =

∫ C̃2

C̃1

∫ C̃2

C̃1

Γ(tp, tq)

u(tp)u(tq)
J(p)J(q)dpdq

+ 2
d∑
j=1

bj

∫ C̃2

C̃1

Γ(tpj , tp)

u(tpj)u(tp)
J(p)dp+

d∑
i,j=1

bibj
Γ(tpi , tpj)

u(tpi)u(tpj)

we have that

sup
s∈[0,1]

1√
n

∣∣bnsc(Tbnsc − T (U−1))− σB(ns)
∣∣ = O(log−

1
3840 n)

almost surely.

Proof. If σ2 > 0, set

B(s) =
1

σ
T (K ′(·, s)) =

∫
I

J(p)K ′(p, s)dp+
d∑
j=1

bjUn(pj).

In the case σ2 = 0, B may be an arbitrary Brownian motion. As J is a bounded func-
tion, T is a linear and Lipschitz continuous functional (with respect to the supremum
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norm), so

sup
s∈[0,1]

1√
n

∣∣∣bnsc(T (U−1bnsc)− T (U−1))− σB(ns)
∣∣∣

= sup
s∈[0,1]

1√
n

∣∣∣T (bnsc(U−1bnsc − U−1)−K ′(·, ns))∣∣∣
≤ C sup

p∈I
s∈[0,1]

1√
n

∣∣∣bnsc(U−1bnsc(p)− tp)−K ′(p, ns)∣∣∣ = O(log−
1

3840 n).

It remains to show that B is a Brownian motion. Cleary, EB(s) = 0 for every
s ≥ 0. By the linearity of T , B is a Gaussian process with stationary independent
increments. Furthermore

E[B2(s)] =
1

σ2

∫ C̃2

C̃1

∫ C̃2

C̃1

E[K(tp, s)K(tq, s)]

u(tp)u(tq)
J(p)J(q)dpdq

+
1

σ2
2

d∑
j=1

bj

∫ C̃2

C̃1

E[K(tpj , s)K(tq, s)]

u(tpj)u(tp)
J(p)dp+

1

σ2

d∑
i,j=1

bibj
E[K(tpi , s)K(tpj , s)]

u(tpi)u(tpj)

= s.

By the well-known properties of Brownian motions, we have:

Corollary 6.3.6. Let be p1, . . . , pd ∈ I and J a bounded function. Under the as-

sumptions of Theorem 6.3.5 for Tn de�ned in De�nition 6.1.1:

bnsc√
n

(Tbnsc − T (U−1))

converges to the Brownian motion σB(s) with σ2 as in Theorem 6.3.5.

Corollary 6.3.7. Let be p1, . . . , pd ∈ I and J a bounded function. Under the as-

sumptions of Theorem 6.3.5 for Tn de�ned in De�nition 6.1.1:(
bnsc√

2n log log n
(Tbnsc − T (U−1))s∈[0,1]

)
n∈N

is almost surely relatively compact in the space D[0, 1] (equipped with the supremum

norm) and the limit set is{
f : [0, 1]→ R

∣∣f(0) = 0,

∫ 1

0

f ′2(s)ds ≤ σ2

}
with σ2 as in Theorem 6.3.5.
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