CONTENTS

FOREWORD - 5 -

ACKNOWLEDGEMENT - 7 -

CONTENTS - 9 -

SUMMARY - 13 -

1 INTRODUCTION AND OBJECTIVES - 15 -

2 STATE OF THE ART - 17 -
 2.1 The concept of self-healing corrosion protection at the cut-edge - 17 -
 2.2 Release from mesoporous microcapsules - 19 -
 2.2.1 The material and structure of microcapsules - 19 -
 2.2.2 Mesoporous silica particles - 21 -
 2.2.3 SBA-3-like fibers and cone-like particles - 24 -
 2.2.4 Release from mesoporous silica - 26 -
 2.3 Diffusion and diffusion barriers in porous materials - 28 -
 2.3.1 Diffusion basics - 28 -
 2.3.2 Diffusion release models - 31 -
 2.3.3 Release functions - 34 -
 2.4 Corrosion inhibitors and model molecules - 36 -
 2.4.1 General aspects - 36 -
 2.4.2 Chromates - 38 -
 2.4.3 Molybdates - 38 -
 2.4.4 The model molecule - 39 -

3 METHODS - 40 -
 3.1 Microphotometric measurement of release - 41 -
 3.1.1 Capture of raw data - 41 -
 3.1.2 Construction of release curves - 43 -
 3.1.3 Accuracy of the method - 45 -
 3.2 Spectroscopic measurement of release - 46 -
 3.2.1 Capture of data and principle of the method - 46 -
 3.2.2 Construction of release curves - 48 -
 3.2.3 Accuracy of the method - 51 -
 3.3 Additional characterization methods - 52 -
 3.3.1 X-ray diffraction - 52 -
 3.3.2 Scanning electron microscopy (SEM) - 53 -
 3.3.3 Transmission electron microscopy (TEM) - 54 -

4 PREPARATION OF MESOPOROUS MICROCAPSULES - 55 -
4.1 SBA-3-like mesoporous fibers - 55 -
4.2 Mesoporous spherical particles - 56 -
4.3 Preparation of mesoporous particles on support - 57 -
4.4 Loading with guest molecules - 58 -
 4.4.1 Loading during synthesis - 58 -
 4.4.2 Post-synthetic loading - 59 -
4.5 Modification of mesoporous particles - 59 -
 4.5.1 Soft treatments - 59 -
 4.5.2 Surface coating (waterglass treatment) - 60 -
 4.5.3 Microsurgery of the particles - 61 -

5 STUDY OF RELEASE - 61 -
5.1 Microscopic observation of release - 61 -
 5.1.1 SBA-3-like fibers - 61 -
 5.1.2 Discussion of release geometry - 63 -
 5.1.3 Cone-like particles - 64 -
5.2 Interpretation of release curves - 66 -
5.3 Diffusion data from the microphotometric method - 67 -
 5.3.1 SBA-3-like fibers - 67 -
 5.3.2 Cone-like particles - 68 -
 5.3.3 Anisotropy of diffusion in SBA-3-like particles - 70 -
5.4 Diffusion data from spectroscopic method - 75 -
 5.4.1 Transformed release curves - 75 -
 5.4.2 SBA-3-like fibers - 76 -
 5.4.3 Spherical mesoporous particles - 80 -
5.5 Importance of cross-wall transport and surface diffusion barriers - 81 -
 5.5.1 Cross-wall transport - 81 -
 5.5.2 Surface diffusion barrier - 82 -

6 MODIFICATION OF RELEASE - 83 -
6.1 Phenomenological treatment of modified release - 83 -
 6.1.1 Structure of modified particles - 83 -
 6.1.2 Release from modified particles (model-free analysis) - 85 -
6.2 Modification of the surface diffusion barrier - 89 -
 6.2.1 Soft modifications by water - 90 -
 6.2.2 Soft modification by other solutions - 92 -
 6.2.3 Modification of mesopore openings - 94 -
 6.2.4 FIB and surface diffusion barriers - 96 -
6.3 Modification by surface coating - 96 -
 6.3.1 Variation of pH during coating - 97 -
 6.3.2 Variation of temperature during coating - 99 -
6.4 Release from calcined particles - 102 -