Ein Beitrag zum ganzheitlichen Qualitätsmanagement von CAD-Modellen in der Produktentstehung

Dissertation
zur
Erlangung des Grades
Doktor-Ingenieur
der
Fakultät für Maschinenbau
der Ruhr-Universität Bochum

von
Alexander Stekolschik
aus Magnitogorsk

Bochum 2007
Dissertation eingereicht am: 18. Oktober 2006

Tag der mündlichen Prüfung: 18. Dezember 2006

Erster Referent: Prof. Dr.-Ing. M. Abramovici

Zweiter Referent: Prof. Dr.-Ing. Dipl.-Math. P. Köhler
In der Mitte von Schwierigkeiten liegen die Möglichkeiten.

Albert Einstein (1879-1955)
# Inhaltsverzeichnis

1 Einleitung .................................................................................................................................1

1.1 Ausgangssituation und Problemstellung ...............................................................1

1.2 Zielsetzung und Abgrenzung der Arbeit ...............................................................4

1.3 Vorgehensweise in der Dissertation .................................................................5

2 Allgemeine Grundlagen und Begriffsdefinitionen ..........................................................7

2.1 CAD-Grundlagen und Definitionen ............................................................................7

  2.1.1 Entstehung von CAD-Modellen ........................................................................ 7

  2.1.2 Entwicklung der CAD-Technik .........................................................................11

  2.1.3 Inhalt der 3D-CAD-Modelle ...........................................................................17

  2.1.4 CAD-Datenaustauschmodelle ...........................................................................20

2.2 Nutzer (Modellkunden) der CAD-Modelle .............................................................22

  2.2.1 Generelle Klassifizierung der Nutzer der CAD-Modelle ..................................22

  2.2.2 Ausgewählte CAD-Modellkundengruppen in der Produktentstehung ..........24

2.3 Allgemeine und CAD-spezifische Definition des Qualitätsbegriffes ..................28

  2.3.1 Allgemeiner Begriff „Qualität“ ...................................................................... 28

  2.3.2 Qualität der CAD-Modelle .............................................................................30

  2.3.3 Spezifikation der Anforderungen an die CAD-Modelle ....................................34

2.4 Grundlagen des Qualitätsmanagements .............................................................37

  2.4.1 Qualitätsmanagement .....................................................................................37

  2.4.2 Qualitätsmanagementmethoden .....................................................................41

3 Anforderungen an das Qualitätsmanagement der CAD-Modelle .................................53

3.1 Allgemeine Anforderungen an die Methodik .......................................................53

3.2 Anforderungen an unterstützende Werkzeuge .......................................................54

3.3 Nichttechnische Anforderungen ...........................................................................55

4 Stand der Forschung und der Technik beim Qualitätsmanagement von CAD-Modellen .....................................................................................................................57

4.1 Relevante Forschungsansätze im Umfeld der Qualitätsverbesserung und der methodischen Modellierung der CAD-Modelle ............................................57

  4.1.1 Ansatz von Meissner .....................................................................................57

  4.1.2 Ansatz von Mendgen ....................................................................................57

  4.1.3 Ansatz von Schenke .....................................................................................58

  4.1.4 Ansatz von Claassen ....................................................................................59

  4.1.5 Ansatz von Janitza .......................................................................................59

  4.1.6 Ansatz von Gerkens .....................................................................................60

  4.1.7 Forschungsverbundprojekt IViP .....................................................................60

  4.1.8 Forschungsprojekt ANICA ............................................................................61

4.2 Verbesserung der Modellqualität durch Normung und Richtlinien ..................61

4.3 Analyse vorhandener Software-Werkzeuge zur CAD-Qualitätsprüfung .... 63
### 4 Einleitung

<table>
<thead>
<tr>
<th>Unterkapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Eingebaute Funktionen in CAD-Systemen</td>
<td>63</td>
</tr>
<tr>
<td>4.3.2 Eigenständige Programme</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 Angewandte methodische Ansätze von Industrieunternehmen</td>
<td>67</td>
</tr>
<tr>
<td>4.5 Zusammenfassung</td>
<td>69</td>
</tr>
</tbody>
</table>

### 5 Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen 71

<table>
<thead>
<tr>
<th>Unterkapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Grobes Gesamtkonzept</td>
<td>71</td>
</tr>
<tr>
<td>5.2 Konzept der Adaption der Qualitätsmanagementmethoden für die Nutzung mit CAD-Modellen</td>
<td>73</td>
</tr>
<tr>
<td>5.2.1 Konzept der Modularisierung der QM-Methoden</td>
<td>73</td>
</tr>
<tr>
<td>5.2.2 Unterstützungswerkzeuge bzw. -methoden für die Qualitätsmodule</td>
<td>75</td>
</tr>
<tr>
<td>5.3 CAD-Modellqualitätsplanung</td>
<td>77</td>
</tr>
<tr>
<td>5.3.1 Modul A: CAD-Modellkundenidentifizierung, -gewichtung und -notation</td>
<td>78</td>
</tr>
<tr>
<td>5.3.2 Modul B: Anforderungsakquisition</td>
<td>82</td>
</tr>
<tr>
<td>5.3.3 Modul C: Anforderungsgewichtung</td>
<td>87</td>
</tr>
<tr>
<td>5.3.4 Modul D: CAD-Modell-Pflichtenheft (Übersetzung der Anforderungen in Modellmerkmal)</td>
<td>90</td>
</tr>
<tr>
<td>5.3.5 Modul E: Wechselwirkungen und Verträglichkeiten der Anforderungen</td>
<td>93</td>
</tr>
<tr>
<td>5.4 CAD-Modellqualitätslenkung</td>
<td>97</td>
</tr>
<tr>
<td>5.4.1 Modul F: Ableitung der Prüfmerkmale</td>
<td>98</td>
</tr>
<tr>
<td>5.4.2 Modul G: CAD-Modell-Design-Review</td>
<td>101</td>
</tr>
<tr>
<td>5.4.3 Modul H: Präventive Prozessüberwachung (CAD-Poka-Yoke)</td>
<td>104</td>
</tr>
<tr>
<td>5.4.4 Modul J: Modellierungsbegleitende Visualisierung und Vermittlung der Qualitätsinformationen</td>
<td>107</td>
</tr>
<tr>
<td>5.5 CAD-Modellqualitätsprüfung</td>
<td>111</td>
</tr>
<tr>
<td>5.5.1 Modul K: Modellendkontrolle</td>
<td>112</td>
</tr>
<tr>
<td>5.5.2 Modul L: Messung der Weiterverwendungsqualität</td>
<td>115</td>
</tr>
<tr>
<td>5.5.3 Modul M: Qualitätsprozess-Controlling</td>
<td>119</td>
</tr>
<tr>
<td>5.6 CAD-Modellqualitätsverbesserung</td>
<td>122</td>
</tr>
<tr>
<td>5.6.1 Modul N: Wiederverwendung der Qualitätsinformation</td>
<td>122</td>
</tr>
<tr>
<td>5.6.2 Modul O: Dokumentation und Vermittlung der Qualitätsinformation</td>
<td>124</td>
</tr>
<tr>
<td>5.7 Anwendung durch Kombination und Anpassung der Methodik-Bausteine</td>
<td>126</td>
</tr>
</tbody>
</table>

### 6 Konzept zur Implementierung und Anwendung des Qualitätsmanagements für die CAD-Modelle 128

<table>
<thead>
<tr>
<th>Unterkapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Vorgehensweise bei der Einführung der Methode</td>
<td>128</td>
</tr>
<tr>
<td>6.2 IT-Systemkonzept für die Unterstützung der Methodik</td>
<td>130</td>
</tr>
<tr>
<td>6.2.1 Übersicht der IT-Systemarchitektur</td>
<td>130</td>
</tr>
<tr>
<td>6.2.2 Informationsmodell und Informationsobjekte für die Implementierung der Methode</td>
<td>131</td>
</tr>
<tr>
<td>6.3 Business Case des Methodeneinsatzes</td>
<td>134</td>
</tr>
<tr>
<td>6.3.1 Kosten-Nutzen-Analyse eines Qualitätsmanagementsystems für CAD-Modelle</td>
<td>134</td>
</tr>
<tr>
<td>6.3.2 Kritische Erfolgsfaktoren und Risiken</td>
<td>138</td>
</tr>
<tr>
<td>6.4 Der Mensch im Qualitätsmanagementprozess der CAD-Modelle</td>
<td>139</td>
</tr>
<tr>
<td>6.4.1 Widerstände und Ablehnung</td>
<td>140</td>
</tr>
<tr>
<td>6.4.2 Motivationsmaßnahmen</td>
<td>141</td>
</tr>
</tbody>
</table>
7 Methodenvalidierung: Optimierung der 3D-CAD-Prozesskette bei einem Automobilzulieferer ................................................................. 143
  7.1 Problemstellung ........................................................................ 143
  7.2 Methodenanwendung ............................................................... 144
    7.2.1 Phase der Qualitätsplanung .................................................. 145
    7.2.2 Phase der Qualitätslenkung .................................................... 150
    7.2.3 Phase der Qualitätsprüfung .................................................... 152
    7.2.4 Ergebnisse und Maßnahmen zur Qualitätsverbesserung; Kostenrechnung ............................................................... 152
    7.2.5 IT-Implementierung ................................................................ 155
  7.3 Kritische Bewertung der Ergebnisse und Erfüllungsgrad der Anforderungen .............................................................................. 158

8 Zusammenfassung und Ausblick ..................................................... 162

9 Literaturverzeichnis ....................................................................... 165

10 Anhang .......................................................................................... 174
  10.1 Auszug aus dem erstellten Prüfprofil ............................................ 174
  10.2 Auszug aus der Checkliste für die externen Modelllieferanten ...... 175
  10.3 Portale ....................................................................................... 176

11 Abbildungsverzeichnis .................................................................... 177

12 Tabellenverzeichnis ....................................................................... 180

13 Abkürzungsverzeichnis ................................................................... 181

Lebenslauf .......................................................................................... 183
1 Einleitung

1.1 Ausgangssituation und Problemstellung


Abbildung 1: Anteil der Firmen, die CAD-Daten für unterschiedliche Aufgaben in der Produktentstehung nutzen [Tech01]

Die ursprüngliche Vision der virtuellen Produktentwicklung ging von einem einheitlichen digitalen Produkt- Referenzmodell aus, auf das alle Anwender und Applikationen in der Produktentstehung zugreifen. Dieses digitale Referenzmodell sollte dabei gleichzeitig als Grundlage sowohl für Änderungen im Produktentstehungsprozess als auch für künftige Anpassungskonstruktionen dienen [AbSt04, AbSt06].

---

1 Die Grundlage dieser Studie waren Interviews in 294 großen und mittelständischen Unternehmen
Einleitung

Abbildung 2: Vision eines zentralen, neutralen digitalen Produktmodells


Abbildung 3: Ansatz der Hersteller integrierter CAX-Systeme

Die reale Situation in der Industrie ist trotz der breiten Anwendung von 3D-CAD-Systemen auch von dieser Lösung noch weit entfernt. So werden für Konstruktionsänderungen und der Konstruktion nachgeschaltete Aufgaben immer wieder neue CAD-Modelle erzeugt oder die
ursprünglichen CAD-Modelle werden zeintensiv nachbearbeitet (Abbildung 4). Außerdem können diese CAD-Modelle meist für künftige Anpassungskonstruktionen kaum oder überhaupt nicht verwendet werden. Dies führt nicht nur zu einem enormen vermeidbaren Zeit- und Kostenaufwand, sondern generiert auch neue Fehlerquellen, da gleiche Geometriedaten in unterschiedlichen Systemen und Änderungszuständen vorliegen. Der Grund für diese unbefriedigende Situation liegt darin, dass sich jeder Mitarbeiter auf die Lösung seiner konkreten Aufgabe und auf die Erfüllung eigener Anforderungen konzentriert. Die von ihm erzeugten CAD-Modelle sind daher für andere Anwender oder Aufgaben kaum oder gar nicht erneut verwendbar [AbSt06].

Ein durchgängiger, effizienter Einsatz der CAD-Modelle könnte die Effizienz eines Unternehmens deutlich verbessern. Während in den meisten Unternehmen für physische Produkte ein Qualitätsmanagement verwendet wird, findet dieses für digitale CAD-Modelle keine Anwendung.

Abbildung 4: Aktueller Zustand der CAD-Modell-Weiterverwendung in der Produktentstehung
1.2 Zielsetzung und Abgrenzung der Arbeit

Das Ziel der vorliegenden Arbeit ist die Entwicklung einer Methodik zur Verbesserung der Qualität von CAD-Modellen in der virtuellen Produktentstehung. Dafür sollen vorhandene Ansätze der Qualitätsprüfung, allgemeine Methoden des Qualitätsmanagements (QM) sowie vorhandene QM-IT-Werkzeuge untersucht und für die neue Methodik ggf. verwendet werden. Dadurch wird eine Reduzierung der Nachbearbeitungszeit in der CAx-Prozesskette, eine Verbesserung der numerischen Qualität der CAD-Modelle und effizientere Prozessabläufe angestrebt.

Um sicherzustellen, dass die Ergebnisse der vorliegenden Arbeit den gestellten Anforderungen entsprechen können, wird eine Abgrenzung zu benachbarten Forschungsgebieten vorgenommen (siehe Abbildung 5). Die zu entwickelnde neue Methodik ist produkt- und systemneutral und wird viele vorhandene Ansätze sowie Methoden des Qualitätsmanagements für die CAD-Modellierung verwenden bzw. dafür anpassen. Eine weitere wichtige Abgrenzung der Dissertation besteht zu der allgemeinen Konstruktionslehre, die normalerweise die Produktgestaltung und nicht die Erstellung der begleitenden CAD-Modelle in den Mittelpunkt stellen.

Abbildung 5: Abgrenzung der Arbeit gegenüber anderen Methoden
1.3 Vorgehensweise in der Dissertation

Zur Erfüllung der gesetzten Ziele wird in der Arbeit folgende Vorgehensweise verfolgt (Abbildung 6):


Danach wird ein allgemeines Konzept für die Implementierung der entwickelten Lösung in einem Unternehmen beschrieben, wobei unterschiedliche Aspekte, wie z. B. das Datenmodell, die Kosten/Nutzen-Analyse und die Anwender, Berücksichtigung finden. Abschließend erfolgt die Anwendung der entwickelten Methodik in Form von industriellen Beispielanwendungen sowie eine Validierung der entsprechenden Implementierung.
<table>
<thead>
<tr>
<th>Darstellung der allgemeinen Grundlagen</th>
<th>CAD-Grundlagen</th>
<th>QM-Grundlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse des Standes der Technik und Forschung</td>
<td>Ansätze zum QM von CAD</td>
<td>CAD-Normung und Richtlinien</td>
</tr>
<tr>
<td>Erstellung der Anforderungen</td>
<td>Anforderungskatalog an das Qualitätsmanagement von CAD-Modellen</td>
<td></td>
</tr>
<tr>
<td>Konzeption</td>
<td>Allgemeines Konzept / Adaption der QM-Methoden für die CAD-Modelle</td>
<td></td>
</tr>
<tr>
<td>Konzept zur Implementierung und Anwendung des Qualitätsmanagements</td>
<td>IT-Systemarchitektur: Daten- und Informationsmodell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einführungsmaßnahmen</td>
<td>Kosten/Nutzen-Rechnung</td>
</tr>
<tr>
<td>Validierung</td>
<td>Praxisbeispiel: Kooperationsprojekt bei einem Automobilzulieferer</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 6: Gliederung der Dissertation
2 Allgemeine Grundlagen und Begriffsdefinitionen

2.1 CAD-Grundlagen und Definitionen

2.1.1 Entstehung von CAD-Modellen

Die methodische Produktkonstruktion ist ein Teil der Produktentwicklung und besteht aus vier grundlegenden Phasen, die durch unterschiedliche Konstruktionsmethoden unterstützt werden:

- Planen und Klären der Aufgabe,
- Konzipieren,
- Entwerfen sowie
- Ausarbeiten.


Ein CAD-Modell ist in der Regel das Ergebnis der Arbeit eines CAD-Konstrukteurs und somit auch ein „Produkt“ seiner Tätigkeit (s. auch [AbSt04]). Der „Absatzmarkt“ dieses virtuellen Produktes ist meistens innerhalb des eigenen Unternehmens vorhanden [Meis00]. Dieses CAD-Modell kann aber auch unternehmensextern von Nutzern oder Anwendungen verwendet. Alle Nutzer des CAD-Modells sind die so genannten CAD-Modellkunden.
Ein 3D-CAD-Modell ist nicht physisch existent, sondern nur virtuell. Da aber die meisten Methoden und Ansätze der Qualitätssicherung für die Entwicklung und Herstellung von physischen Produkten entworfen wurden, ist es sinnvoll und notwendig, 3D-CAD-Modelle (als Produkt der Konstruktionsphase) mit physischen Produkten zu vergleichen (s. auch Abbildung 7). Die Vergleichsergebnisse können später in der Dissertation für die Werkzeug- und Methodenauswahl zur Implementierung benutzt werden.

CAD-Modelle weisen in jeder Phase ihrer Entstehung Ähnlichkeiten aber auch Unterschiede zu den physischen Produkten auf. Dies wird in späteren Kapiteln als Grundlage dienen, um die Methoden des klassischen Qualitätsmanagements aus physischer Produktwelt auf die CAD-Modelle zu übertragen. Im Folgenden werden die Entstehungsprozesse von physischen und virtuellen Produkten gegenübergestellt.

a) Planung der CAD-Modelle im Vergleich zur Planung physischer Produkte


- **Qualitätsanforderungen:** Sowohl Kunden von physischen Produkten als auch CAD-Modellkunden stellen an ihre Produkte bestimmte Anforderungen, die im ungünstigen Fall sowohl unverständlich als auch widersprüchlich sein können. Dadurch, dass die
Modellkunden sich im eigenen Unternehmen befinden, besteht die Möglichkeit, die Anforderungsakquisition einfacher zu gestalten.

b) Entwurf der CAD-Modelle im Vergleich zur Konstruktion und Erprobung physischer Produkte


c) Generierung der CAD-Modelle im Vergleich zur Fertigung physischer Produkte

Die meisten Unterschiede zwischen physischen Produkten und CAD-Modellen treten in dieser Phase auf. Seit dem Beginn der industriellen Fertigung werden die Produktentwicklung und die Produktherstellung (Fertigungsplanung und Fertigung) in den meisten Fällen strikt voneinander getrennt, nicht zuletzt, weil dafür unterschiedliches Wissen notwendig ist und die Abdeckung beider Arbeitsgebiete durch eine Person bei der heutigen Verfahrenskomplexität fast unmöglich ist. Die CAD-Modell-Fertigung (also CAD-Modell-Generierung) wird im Unterschied zu einem physischen Produkt fast immer von ein und derselben Person und in einer Anwendung ausgeführt, wie es in der Phase der Planung und Entwicklung der Fall war. Dies erleichtert zwar die Aufgabe des Konstruktors, weil keine Informations- und Kommunikationsbrüche zwischen der Entwicklungs- und Fertigungsphase bzw. -abteilung auftreten und er seine Modellierungsstrategie bereits in der Konzeptphase festlegen kann.

---

2 Dies wird auf der einen Seite wegen der hohen Versuchskosten gemacht und auf der anderen Seite wegen der hohen Änderungskosten im Falle einer Fehlerfeststellung. Deshalb wird versucht, die Erprobung mit digitalen Produktmodellen durchzuführen.
Weiterhin ist die Gefahr der Generierung von Modellen, die nicht zu fertigen sind, geringer als bei physischen Produkten. Erschwerend kommt aber hinzu, dass dem CAD-Modellerzeuger in vielen Fällen nicht bewusst ist, dass das Produkt seiner Arbeit nicht nur das Konstruktionsergebnis beschreiben muss, sondern auch von anderen Anwendern weiterverwendet wird und deshalb auch zusätzliche Anforderungen zu erfüllen hat.


d) Weiter- und -Wiederverwendung der CAD-Modelle im Vergleich zur Nutzung physischer Produkte


Bei dieser Gegenüberstellung von CAD-Modellen und physischen Produkten wurde auf die selbstverständlichen Fakten verzichtet. So müssen physikalische Produkte entsorgt werden, was für CAD-Modelle nicht der Fall ist. CAD-Modelle müssen auch keine Vorschriften zur Sicherheit oder zum Umweltschutz erfüllen. Zusammenfassend lässt sich feststellen, dass die CAD-Modelle als virtuelles Produkt des Entwicklungingenieurs bei der Betrachtung auf einer abstrahierten Ebene trotz einiger Unterschiede sehr viele ähnliche Eigenschaften zu den physischen Produkten aufweisen, was auch die Anwendung der verbreiteten Qualitätsmanagementmethoden durchaus möglich macht. Die bereits beschriebenen Abweichungen von den physischen Produkten zeigen aber die Notwendigkeit, dass die herkömmlichen QM-Methoden vor deren Anwendung an die virtuellen CAD-Modelle angepasst und auch miteinander kombiniert werden sollen. Besonders wichtig ist dabei, dass Qualitätsmanagementmethoden, die bei physischen Produkten für die Fertigung gedacht sind, auch bei CAD-Modellen für die „virtuelle“ Entstehung zum Einsatz kommen können.
2.1.2 Entwicklung der CAD-Technik


3D-CAD-Systeme (Abbildung 8) bilden die Grundlage der modernen rechnerunterstützten Produktentstehung. 3D-Drahtmodelle verwenden 3D-Punkte und 3D-Kurven für die Körperdarstellung und bieten keine Volumendarstellung, so dass daraus keine Flächen oder Volumeninformationen abgeleitet werden können. Die nächste Stufe bilden 3D-Flächenmodelle, die auch Flächeninformationen beinhalten. Dadurch können zwar nicht-
sichtbare Elemente ausgeblendet werden, jedoch lassen sich die physischen Informationen kaum darstellen. Weiterhin konnten schon Flächeninhalte und Schnittkanten berechnet werden [Abra05b]. Flächenbasierte Systeme sind immer noch weit verbreitet, was darauf zurückzuführen ist, dass sie die Freiformflächen sehr effektiv beschreiben können und deshalb besonders im Designbereich (Automobilbau) breiten Einsatz finden³. Die eindeutigste Darstellung bieten jedoch die 3D-Volumenmodelle [Abra05b, s. auch Aber06]. Die 3D-Volumen-Modellierung zeigt folgende Vorteile [nach Abra05b]:

- vollständige, widerspruchsfreie und genaue Beschreibung der Körperform,
- Informationsquelle für nachgelagerte Funktionen (einschließlich geometrische Berechnungen),
- automatische Schnitterzeugung,
- gute Visualisierungsmöglichkeiten (automatisches Ausblenden verdeckter Kanten, Schattierung),
- Möglichkeit der Körperkollisionsbetrachtungen sowie
- geringer Eingabeaufwand zur Modellierung komplexer Objekte.

Abbildung 8 : Entwicklung der CAD-Geometriemodelle

³ Ein Beispiel für ein 3D-Flächen-System ist das CAD-System ICEM Shape Design von ICEM Limited, das nach dem Verbreitungsgrad als ein Standard in der Automobilindustrie für die Modellierung der Designflächen angesehen werden kann (obwohl für die anschließende Volumenmodellierung andere, 3D-Volumen-Modellierer wie CATIA verwendet werden).
Die oft sehr hohe Systemkomplexität und zunehmende Rechneranforderungen sind der Preis für eine immer größer werdende Vielfalt an Funktionalitäten.

**Modelle der 3D-CAD-Volumenbeschreibung**

Rechnerintern werden 3D-Volumenmodelle durch unterschiedliche Datentypen abgebildet, die sich allgemein in folgende Gruppen einteilen lassen (s. auch [SpKr97, Abra05b, GaEK01]):

- **Zellmodelle (oft auch Voxelmodelle benannt):** Bei diesen Modellen wird das 3D-Volumen durch endlich große Elementarvolumenelemente repräsentiert. Unter *Voxel* wird eine quaderförmige Zelle innerhalb eines Quaders oder unbegrenzten Raumes verstanden. Die Zellmodelle werden weniger in 3D-CAD, sondern vielmehr in 3D-Computergrafik und DMU verwendet. Das Hauptproblem ist die Darstellung komplizierter Geometrien, die durch eine Vielzahl von Elementen abgebildet werden müssen. Informationen über Flächen, Kanten, Punkte sind nicht direkt ableitbar, daher ist das CAD-Modell für die Fertigung ungeeignet und hat einen hohen Speicherbedarf.


- **B-Rep-Modelle:** Im Unterschied zu CSG wird ein B-Rep-Modell (Boundary Representation = Flächenbegrenzungsmodell) explizit durch die Geometrieelemente und ihre Beziehungen zueinander (Topologie) definiert. Jede Fläche beinhaltet einen Normalenvektor, wodurch das System die Materialseite berechnet [PLHS05]. Nach jeder Änderung muss das CAD-Modell auf seine geometrische Abgeschlossenheit überprüft werden. Nur wenn das CAD-Modell topologisch geschlossen ist, repräsentiert es ein gültiges Volumen. Ein B-Rep-CAD-Modell ist ein akkumulatives

---

4 Neben dem Geometriemodell bauen CAD-Systeme auch ein topologisches CAD-Modell auf, das durch die Anwendung von Euler-Operationen auf Konsistenz geprüft wird [Claa02]. Diese Konsistenzprüfung stellt eine Bedingung für die geometrische Korrektheit des Modells und verhindert dadurch fehlerhafte Geometrien.
CAD-Modell, weil es explizit alle geometrischen Elemente zur Repräsentation der Gestalt enthält [GaEK01]. Weitere Vorteile sind die Möglichkeit des direkten Zugriffs auf alle Geometrieelemente sowie die schnelle und leichte Visualisierung.

Viele moderne CAD-Systeme verfügen über so genannte hybride Ansätze, bei denen die Vorteile von CSG und B-Rep gemeinsam ausgenutzt werden. In solchen CAD-Modellen werden zwei Strukturen parallel geführt, wobei aber die CSG-Struktur dominiert. Auf diese Art und Weise besteht die Möglichkeit, sowohl die Historie als auch die Freiformelemente abzubilden.

**Wissens- und Variantentechniken für 3D-CAD-Modelle**

In den letzten Jahren wurden die schon früher in der Forschung aufgestellten Ansätze zu der erweiterten Geometriemodellierung in einigen kommerziellen 3D-CAD-Systemen realisiert. Deren drei Säulen sind die Feature-Technologie, die Erweiterung der Modellbeschreibung um Parameter (Parametrik) und die wissensbasierte CAD-Modellierung.


---

⁵ Ein Beispiel für ein vollparametrisches System ist das 3D-CAD-System Pro-Engineer (Fa. PTC). Unigraphics-NX (Fa. UGS) oder CATIA V.5 (Dassault Systemes) sind hingegen teil-parametrische Systeme. Der Unterschied ist aber in vielen Fällen fließend; oft kann man durch vorhandene Einstellungen den Anwender zu der vollparametrischen Modellierung zwingen.
Objekten eines parametrischen CAD-Modells darstellen. Claasen [Claa02] fasst die Vorteile der parametrischen CAD-Systeme wie folgt zusammen:

- leichte Modifizierbarkeit der CAD-Modelle,
- einfache Erstellung von Teilefamilien,
- keine notwendigen Programmierkenntnisse für automatisierte Variantenerstellung und
- auf unterschiedliche Art und Weise (meistens implizite) Abbildung der Konstruktionsabsicht

Der Nachteil der Parametrik liegt oft in den sehr komplizierten Zusammenhängen der großen 3D-Modelle.


---


2.1.3 Inhalt der 3D-CAD-Modelle


Unter Materialstamm wird in der Materialwirtschaft (Materialwirtschaft deckt die Funktionen von der Disposition über den Einkauf bis zur Bestandführung, Lagerverwaltung etc. ab), die Gesamtheit aller Informationen über sämtliche Materialien verstanden, die ein Unternehmen beschafft, fertigt, lagert und verkauft. Jedem Bauteil wird somit in einem ERP-System (z. B. SAP R/3) ein Materialstamm zugewiesen.

Abbildung 11: Semantik des Begriffes „3D-CAD-Modell“


\textsuperscript{8} Die Vererbung (auch Generalisierung genannt) ist ein Begriff der objektorientierten Beschreibungssprache UML. Dies ist eine Beziehung zwischen zwei Objekten, wobei ein Objekt (Unterklasse) eine Untermenge des anderen Objektes (Oberklasse) ist und alle Eigenschaften von ihm übernimmt.
Abbildung 12: Inhalte eines 3D-CAD-Modells

Wegen der zahlreichen Funktionen in modernen CAD-Systemen kann ein Ergebnis der Modellierung neben Produkt- und Fertigungsinformationen (z. B. Toleranzen, Oberflächenwert) zum Beispiel auch eine Baugruppenstruktur beinhalten.

2.1.4 CAD-Datenaustauschmodelle

Die CAD-Datenaustauschformate bzw. -schnittstellen erlauben den Datenaustausch zwischen unterschiedlichen CAD-Systemen oder auch von einem CAD-System zu einem anderen IT-System in der Prozesskette (z. B. FEM). Die am weitesten verbreiteten sind die neutralen Schnittstellen IGES und STEP. In der letzten Zeit werden aber immer häufiger semi-neutrale Formate einiger Software-Hersteller für den Datenaustausch benutzt, wie z. B. JT oder Parasolid.

Neutrale Datenaustauschformate

IGES


Produktdatenmodell STEP


- Modelle zur Beschreibung von Produktdaten (Integrated Resources, Anwendungsprotokolle),
- Beschreibungsmethoden (Description Methods),
- Implementierungsmethoden (Implementation Methods) und
- Methoden zum Konformitätstest (Conformance Testing Methodology and Framework).

**Semi-neutrale proprietäre CAD-Datenaustauschformate**

In den letzten fünf Jahren haben viele Software-Anbieter versucht, ihre „semi-neutralen“ Datenaustauschformate auf dem Markt durchzusetzen. An dieser Stelle soll näher auf die Initiative „JTOpen“ der Firma UGS eingegangen werden, die nach zahlreichen Statistiken das marktführende Datenformat entwickelt hat.


Die Interaktion mit den Anwendungen findet über so genannte Toolkits statt, die entsprechende Funktionen [JtOp06] anbieten (Abbildung 13):

2.2 Nutzer (Modellkunden) der CAD-Modelle

In diesem Unterkapitel wird eine Übersicht über CAD-Modellnutzer (Personen, Unternehmenseinheiten oder Applikationen) in der Produktentstehung gegeben.

2.2.1 Generelle Klassifizierung der Nutzer der CAD-Modelle

In der Produktentstehungskette existiert eine Reihe von CAD-Modellkunden, die 3D-CAD-Modelle für eigene Aufgaben einsetzen und ihre Daten weiterverwenden. Dies macht als ersten Schritt eine allgemeine Klassifizierung notwendig, die unterschiedliche Ansichten auf die Modellverwendung in den Mittelpunkt stellt. Abbildung 14 zeigt eine für diese Arbeit entwickelte Klassifizierungsmatrix, die unterschiedliche Aspekte als Matrixdimensionen hat.
### Abbildung 14: Klassifizierung der CAD-Modellkunden nach der Art der Nutzung von CAD-Modellen

Diese Aspekte sind:

- **Modellkundenklassifizierung nach der Art der Modellnutzung:** Grundsätzlich können die Modellkunden die vom CAD-Lieferanten erhaltenen Modelle ändern oder unverändert für ihre Aufgaben nutzen. Zwangsläufig muss der CAD-Modellkunde in den meisten Fällen das gleiche CAD-System nutzen, wenn die Änderungen im nativen Format durchgeführt werden. An dieser Stelle ist anzumerken, dass die CAD-Ingenieure selbst typische Modellkunden sind, die alte CAD-Modelle für Varianten- oder Anpassungskonstruktionen modifizieren und weiterentwickeln.

- **Modellkundenklassifizierung nach der Art der Modellrepräsentation:** Im Allgemeinen kann das CAD-Modell im nativen Format des CAD-Systems oder in einem neutralen konvertierten Format vorliegen und genutzt werden. Dementsprechend ändern sich auch die Anforderungen der Modellkunden an die CAD-Modelle. Wenn das native CAD-Modell für Kundenbedürfnisse geändert und angepasst wird, müssen entsprechende Änderungsmöglichkeiten bei der Modellierung implementiert werden. Bei einem konvertierten CAD-Modell ist eine Änderung durch die Modifikation der Parameter oder Entstehungsgeschichte unmöglich, was bedeutet, dass das CAD-Modell schon vor dem Exportvorgang die den Modellkunden zufrieden stellende Gestalt haben muss.

Dementsprechend entstehen auch neue Anforderungen, wie z. B. die Einhaltung der Modellierungsrichtlinien des Auto-OEM, oder auch zusätzliche Maßnahmen zum Know-how-Schutz der Modellinhalte.

Tabelle 1 zeigt einige Beispiele der typischen Modellkunden mit einigen Anforderungen, die aus der Klassifizierung entstehen.

<table>
<thead>
<tr>
<th>CAD-Modellkunde</th>
<th>Klassifizierung</th>
<th>Einige Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging-Ingenieur bei dem Kundenunternehmen (OEM)</td>
<td>Externer CAD-Modellkunde mit der Modellnutzung ohne Änderungen in einem nativen Format</td>
<td>• Funktionierende Kinematiksimulationen in Baugruppen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Verwendung der OEM-Startmodelle</td>
</tr>
<tr>
<td>Marketingabteilung</td>
<td>Interner CAD-Modellkunde mit der Modellnutzung ohne Änderungen in einem konvertierten Format</td>
<td>• Einfache Ableitung der Außenfläche für Internet-Präsentationen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gelöschte Know-how-relevante Inhalte</td>
</tr>
<tr>
<td>FEM-Ingenieur in einer Berechnungsabteilung</td>
<td>Interner CAD-Modellkunde mit der Modellnutzung mit Änderungen in einem nativen Format</td>
<td>• Alle Geometrieelemente unter 2 mm müssen abschaltbar sein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Das CAD-Modell muss ein Volumenkörper sein</td>
</tr>
</tbody>
</table>

Interessant ist an dem letzten Beispiel, dass ein FEM-Ingenieur selbstverständlich zwar das CAD-Modell mit zusätzlichen Daten bereichert und somit ein FEM-Modell erstellt, aber im Idealfall das ursprüngliche CAD-Modell nicht ändert (in der Realität müssen die CAD-Modelle oft angepasst werden).

### 2.2.2 Ausgewählte CAD-Modellkundengruppen in der Produktentstehung

In diesem Kapitel wird die Weiterverwendung eines CAD-Modells komprimiert analysiert. Es würde den Rahmen dieser Arbeit sprengen, an dieser Stelle eine Gesamtübersicht über alle CAD-Modellkunden zu geben. Dies liegt daran, dass das 3D-CAD-Modell in der modernen Produktenstehung die Basis für die meisten nachgeschalteten Aufgaben ist. Dennoch werden die ausgewählten größten Kundengruppen in diesem Unterkapitel 95 Prozent aller Einsatzfälle abbilden. Die jeweiligen zu beschreibenden Gruppen enthalten sowohl Anwender als auch die entsprechenden Applikationen.

### CAD-basierte Konstruktion

Die CAD-Ingenieure selbst bilden einen großen Teil der Kunden der 3D-CAD-Modelle, da ein CAD-Modell sowohl in der CAD-Prozesskette (z. B. Baugruppenmodellierung,
Zeichnungsableitung, einfache Einbauuntersuchungen usw.) als auch später für Änderungskonstruktionen (siehe auch Abbildung 15) verwendet werden kann. Hier ist die duale Rolle des 3D-CAD-Modells als Anwendung deutlich sichtbar: Auf der einen Seite ist ein 3D-CAD-System der Modelllieferant für alle Modellkunden und auf der anderen Seite ist ein 3D-CAD-System selbst sein eigener CAD-Modellkunde, wenn man spätere CAD-basierte Konstruktionen betrachtet. Wichtig ist dabei, dass die Qualitätsanforderungen an die CAD-Modelle projektübergreifend gestellt werden. Darüber hinaus muss berücksichtigt werden, dass auch in einem Projekt die CAD-Modelle einem sehr intensiven Iterationsprozess unterliegen. Wenn das CAD-Modell nicht von Anfang an änderungsfreudig erstellt wurde, muss es später zeitaufwendig modifiziert oder sogar neu modelliert werden.

**Abbildung 15**: Einige CAD-Modellkunden aus dem CAD-Umfeld

Die höchsten Qualitätsanforderungen an die CAD-Modelle werden dann gestellt, wenn sie später für den gleichen Zweck wieder Verwendung finden (z. B. Anpassungskonstruktion oder Nutzung in Teilebibliotheken). Das einmal generierte CAD-Modell wird oft später Hunderte Male von anderen Konstrukteuren eingesetzt, was sowohl einen einwandfreien numerischen Aufbau als auch einen durchdachten semantischen Aufbau mit den entsprechenden Parametern und sonstigen Eigenschaften erfordert. Dies ist eine typische 1-zu-n-Beziehung, bei der die breite Nutzung und die entsprechenden Skaleneffekte sowohl Einsparungspotenziale als auch Gefahren mitbringen.

**Simulation und Berechnung (CAE)**

Unter dem Oberbegriff CAE (Computer Aided Engineering) werden oft unterschiedliche Engineering-Systeme zur Simulation des Bauteilverhaltens verstanden. Die Vertreter dieser

---

9 Bei einer im Laufe der Arbeit bei einem Autoteilzulieferer durchgeführten Untersuchung wurde gezeigt, dass eine Konstruktionsänderung eines Teiles der Sitzstruktur oft mehr als 2-3 Tage beansprucht. Bei einer methodischen Modellierung wurden aber die Werte von 1-2 Stunden erreicht.
Familie sind beispielsweise Finite Elemente Methode, Digital Mock Up, Mehrkörpersimulation oder Crash-Simulationen. Das CAD-Modell wird bei CAE-Verfahren als Grundlage zur Bildung des Simulationsmodells genommen [GaEK01]. Die Qualität des Quellmodells bestimmt oft auch die Qualität des Simulationsmodells und ist somit entscheidend für die Güte der Analyseergebnisse. Die Vorbereitung des CAD-Modells und die Bildung des Simulationsmodells finden in einem so genannten Preprozessor statt. In vielen Fällen (z. B. bei FEM) wird das CAD-Modell bei der Modellbildung diskretisiert [Wern01, GaEK01]. Dabei wird das kontinuierliche CAD-Modell durch ein diskretes angenähert. Damit lässt sich ein Geometriemodell in Polyeder unterteilen, deren mechanisches Verhalten jeweils durch einfache Gleichungen beschrieben werden kann. Die Probleme können also meistens entweder an der Schnittstelle zwischen dem CAD- und Simulationsmodell auftreten oder dadurch, dass schon das CAD-Modell die Wirklichkeit falsch abgebildet hat. Wichtige Daten, die vom Modellnutzer verwendet werden, sind zum Beispiel bei MKS¹⁰ [Claa02]: Geometrische Körper (Lage, Orientierung, Masse, Trägheit), Massenpunkte, Hilfselemente (Lage im Raum), Koordinatensysteme (Lage, Orientierung).

Dadurch, dass verschiedene CAE-Verfahren oft unterschiedliche Simulationsmodelle bilden, sind auch die Anforderungen an die 3D-CAD-Modelle sehr differenziert. Allen gemeinsam ist es aber, dass sie von einem CAD-Modell eine solche Flexibilität verlangen, so dass das CAD-Modell für die jeweiligen Simulationszwecke angepasst werden kann. Zum Beispiel darf das CAD-Modell für die meisten FEM-Berechnungen keine Einzelheiten enthalten, wohingegen ein DMU-Modell die genaue äußere Geometrie für Toleranzuntersuchungen erfordert.

**Arbeitsvorbereitung (CAPP) und Fertigung (CAM)**

Unter CAM-Systemen werden Fertigungssysteme beispielsweise für die rechnerintegrierte Bauteilfertigung, Fertigungsplanung, Montage und Qualitätsprüfung verstanden [Sanf95]. Ein CAM-System findet vorwiegend im industriellen Bereich für die Steuerung von Werkzeugmaschinen Verwendung. Die Arbeitsvorbereitung stellt das Bindeglied zwischen der Konstruktion und Fertigung dar und wird sehr stark von den in der Fertigung genutzten Vorgehensweisen und Verfahren beeinflusst [Claa02, Dick05]. Ein Fertigungsmodell enthält alle Daten (meistens geometrieebeschreibende Daten, Strukturdaten, Bemaßungen, Toleranzen, werkzeug- und maschinenpezifische Daten), die zur Erstellung der vollständigen Fertigungsinformationen erforderlich sind. Im Idealfall werden die erforderlichen Informationen für die Steuerung direkt von den für die Entwicklung zuständigen CAD-Programmen geliefert [FiBV06]. Das Hauptproblem bei CAM liegt in der fehlenden Standardisierung der Schnittstellen zwischen den einzelnen Systemen sowie in der Anbindung von CAD-Programmen, da in der Regel andere Computer-Systeme für CAD-Modelle verwendet werden, als zur Steuerung der Fertigungsmaschinen. In der Praxis kommen leider immer noch, insbesonders in der Fertigungsplanung, die IT-Systeme nicht durchgängig zum

¹⁰ MKS: Mehrkörpersimulationssysteme
Einsatz. Dies ist oft der Grund dafür, dass den CAD-Modellen beim Exportvorgang viele wichtige Informationen verloren gehen. Eine weitere Anforderung seitens CAM ist, dass bei der Modellierung solche Fertigungsfeatures verwendet werden sollen, die die Geometrie eindeutig um Fertigungsinformationen erweitern\textsuperscript{11}.

**Datenverwaltung (PDM/PLM)**


**Computerunterstützte Qualitätssicherung (CAQ)**

CAQ-Systeme analysieren (z. B. Prozessdatenanalyse), dokumentieren und archivieren qualitätsrelevante Daten für die Fertigungsprozesse. Ein CAQ-System unterstützt alle Prozesse zur Sicherstellung der Produktqualität während der gesamten Wertschöpfungskette. Über festgelegte Qualitätsprüfungen werden sowohl die Qualität von Anlieferungen als auch der Qualitätsstandard während der Produktion bis hin zum Warenausgang überwacht. Auf dem Weg von einem CAD-Modell bis zu einem funktionsfähigen Messprogramm liegen heute

\textsuperscript{11} Ein Beispiel dafür ist eine einfache Bohrung. Wenn im CAD-Modell die Bohrung mit dem Formelement „Extrusionsschnitt“ erzeugt wurde, kann dies das CAM-System später nicht als Fertigungsschritt Bohrung deuten. Wenn hingegen das Fertigungsfeature „Bohrung“ verwendet wurde und auch zusätzliche Informationen (z. B. Bohrer, Toleranz usw.) eingesetzt werden, kann das CAM-System die Information übernehmen. Viele Firmen gehen noch weiter und erweitern mit Wissenssprachen die Bohrungsfeatures, was die Verarbeitung in den CAM-Modulen noch weitgehender automatisiert.

**Systeme mit grafischer Weiterverwendung (Technische Produktdokumentation, Vertrieb)**


**2.3 Allgemeine und CAD-spezifische Definition des Qualitätsbegriffes**

**2.3.1 Allgemeiner Begriff „Qualität“**


Nach DIN ISO 9000 wird die Qualität als der Grad verstanden, in „dem ein Satz inhärenter Merkmale Anforderungen erfüllt“. Diese allgemeine Definition kann aber nur bedingt auf das digitale CAD-Modell übertragen werden. Wichtig sind die Definitionen von so genannten
ausgewiesenen „Qualitätsgurus“, weil sie die Entwicklung des Qualitätsmanagements stark beeinflusst haben.


CAD-Modelle sind nichtmaterielle Erzeugnisse. Deshalb sind hier die Qualitätsdefinitionen für nichtphysische Produkte von besonderer Bedeutung. Interessant ist in diesem Zusammenhang die Definition von Bruhn [Bruh04], der die Dienstleistungsqualität als die Fähigkeit eines Anbieters definiert, die Beschaffenheit von einer Kundenbeteiligung bedürfenden Leistung gemäß den Kundenerwartungen auf einem bestimmten Anforderungsniveau zu erstellen. Weiterhin bemerkt Bruhn, dass sich die Qualität aus der Summe der Eigenschaften bzw. Merkmale der Dienstleistung ergibt, bestimmten Anforderungen gerecht zu werden [Bruh04]. Die Qualität eines anderen nichtphysischen Produktes, nämlich der Software, wird in anderen Arbeiten als die Gesamtheit der Merkmale

von Software bezeichnet, die erforderlich sind, um die Funktionen zu erfüllen, die die Software für ihren sicheren und fehlerfreien Einsatz benötigt.


Aus allen Definitionen ergeben sich folgende Grundmerkmale [Wien05], [Hann00]:

- Qualität ist nichts Absolutes, sondern stellt die Beschaffenheit eines Produktes in Bezug auf gegebene Erfordernisse und Forderungen dar. Deshalb kann sich auch der Grad der Qualität im Laufe der Zeit bei der identischen Produktbeschaffenheit ändern.


- Man kann einem Produkt schlecht das Vorhandensein bzw. das Fehlen von Qualität zuweisen, weil alle Ausprägungen von „sehr gut“ bis „sehr schlecht“ möglich sind.

Abbildung 16: Qualitätsbegriff im Laufe der Zeit (in Anlehnung an [Sand01], [Hann00])

### 2.3.2 Qualität der CAD-Modelle

Die Begriffe Qualität, Kunde und Fehler bei den CAD-Modellen stehen naturgemäß in engem Zusammenhang und sollten in diesem Unterkapitel näher geklärt und definiert werden.

Bezogen auf den Qualitätsbegriff ergeben sich insgesamt zwei allgemeine Sichtweisen bzw. Ansätze, die sich auch auf die CAD-Modelle übertragen lassen:

- **Produktbezogener Ansatz**: Hierbei wird die Qualität als Summe der vorhandenen Eigenschaften verstanden, weshalb auch die Qualitätsperspektive als objektiv
bezeichnet werden kann. Die Produkteigenschaften bzw. die Merkmale der CAD-Modelle stehen also hier im Mittelpunkt.

- **Kundenbezogener Ansatz**: Bei diesem Ansatz wird die Wahrnehmung der Produkteigenschaften durch den Kunden in den Mittelpunkt gestellt. In diesem Kontext entscheiden die subjektive Qualitätsperspektive des Kunden und die Erfüllung der Kundenanforderungen über den Grad der Qualität.


Im Rahmen dieser diese Arbeit wird folgende Definition formuliert:
Der CAD-Modellkunde ist eine Person, ein Anwendungssystem oder eine Organisationseinheit, die ein CAD-Modell oder Teile eines CAD-Modells verwendet und/oder verwertet.

Für die umfassende Betrachtung muss noch eine zusätzliche Dimension herangezogen werden. Die Modellkunden, die an die von ihren Modelllieferanten erzeugten Modelle unterschiedliche Anforderungen stellen, können firmenextern und/oder auch firmenintern sein. Für diese Arbeit spielen insbesondere die internen Modellkunden eine entscheidende Rolle, weil sie für die Produktentwicklung eine besonders wichtige Rolle spielen.

Abbildung 17: Duale Rolle als CAD-Modellkunde und Modelllieferant (Quelle der Bilder: Dassault)

Richtlinie kann nur im Bereich der numerischen Qualität auf die digitalen Modelle angewendet werden, ist für den sicheren Datenaustausch entwickelt worden und daher kaum für den Entstehungsprozess eines Modells verwendbar. Ähnlich sind auch die USA-Richtlinien (Product Data Quality Guidelines) aufgebaut und gegliedert [SASIG05].


In Anlehnung an die schon getroffenen Definitionen kann daher die Modellqualität wie folgt definiert werden:

*Die CAD-Modellqualität ist ein Maß für die Fähigkeit des CAD-Modells, eine oder mehrere Anforderungen von CAD-Modellkunden zu erfüllen.*

Die Modellqualität ist also umso höher, je kleiner die Abweichung zwischen den vorhandenen Modellmerkmalen und den gestellten Kundenanforderungen ist.

In dieser Definition wurde nicht der produktbezogene (in diesem Fall: modellbezogene), sondern der kundenbezogene Qualitätsansatz gewählt, bei dem die Erfüllung der Anforderungen unterschiedlicher Modellkunden/Modellkundengruppen im Mittelpunkt steht. Grob unterscheidet man verschiedene Aspekte bzw. Bestandteile der CAD-Modellqualität, die sich je nach der Qualitätsanforderungsart (in Anlehnung an Meissner) zu Gruppen zusammenfassen lassen.

Wenn das CAD-Modell diesen Kundenanforderungen schon teilweise nicht genügt und nachbearbeitet werden muss, weist es Fehler auf. Das CAD-Modell kann somit nicht ohne Nachbearbeitung weiterverwendet werden. Deshalb muss auch der Begriff „Modellfehler“ (Fehler ist gemäß DIN die „Nichterfüllung festgelegter Forderungen“ [DIN8402]) definiert werden, in dem nicht das CAD-Modell selbst, sondern die Weiterverwendung bei einem Modellkunden die zentrale Rolle spielt:

_Ein CAD-Modellfehler ist ein Merkmal eines CAD-Modells, das unerwünschte Abweichungen vom angestrebten Verarbeitungsprozess eines Modellkunden verursachen kann._

Hier wird klar, dass eine getrennte Betrachtung unterschiedlicher Aspekten der Modellqualität, wie z. B. numerische oder organisatorische Qualität, nicht ausreichend sind. Diese Aspekte stellen nur einzelne Anforderungen oder Anforderungsgruppen dar und können die effektive Weiterverwendung und somit hohe Modellqualität nicht gewährleisten. Die Normen definieren zusätzlich den Begriff „Mangel“ als einen sicherheitsrelevanten Fehler, der die Nutzung vollständig verhindert. Im Fall der digitalen Produktmodelle kann man ihn wie folgt definieren:

_Ein CAD-Modellmangel ist ein Merkmal eines CAD-Modells, das die Nutzung maßgeblich verhindert und somit eine Neumodellierung erforderlich macht._

Als Beispiel sei hier ein digitales 3D-CAD-Modell gegeben, das eine 100%ige numerische und geometrische Qualität aufweisen kann und von vielen Modellkunden, wie z. B. FEM- oder MKS-Teilprozess, in aufwendiger Nacharbeit für weitere Anwendungen vorbereitet werden muss, indem unnötige Einzelheiten entfernt oder zusätzliche Informationen nachträglich modelliert werden. Noch schlechter wird die Modellqualität, wenn dieses 3D-CAD-Modell so modelliert worden ist, dass die Nachbearbeitung wegen der falschen Modellierungsmethodik und des Modellaufbaus erschwert wird oder sogar unmöglich ist. In diesem Fall kann das CAD-Modell als „mangelhaft“ eingestuft werden. Das Beispiel zeigt, dass eine grundlegende Änderung der Denkweise bei Modellerzeugern notwendig ist.

2.3.3 _Spezifikation der Anforderungen an die CAD-Modelle_


Elementare Qualitätsanforderungen: Diese Anforderungen bildet die Grundlage für jegliche Modellnutzung. Im Falle ihrer Nichterfüllung kann das CAD-Modell überhaupt nicht oder nur sehr eingeschränkt weiter- bzw. wiederverwendet werden. Folgende zwei Anforderungsgruppen sind dabei besonders wichtig und bilden in meisten Fällen eine Voraussetzung:

- **Numerische** Qualitätsanforderungen: Das sind Anforderungen für die korrekte und eindeutige mathematische Beschreibung der Produktmodelle. Beispiel hierfür sind die richtige Ausrichtung der Flächen eines CAD-Modells im Raum oder die 100%ige Regenerierbarkeit der Modelle [Meis00]. Die numerischen Qualitätsanforderungen bilden die Grundlage des konventionellen Qualitätsverständnisses bei 3D-CAD-Modellen. Die entsprechenden Merkmale können zum größten Teil durch ein Prüfprogramm überprüft werden.

- **Geometrische** Qualitätsanforderungen: Nach der VDA-Empfehlung 4955 gibt die geometrische Datenqualität Aufschluss darüber, „wie und mit welcher Genauigkeit Geometrieelemente erzeugt werden sollten, damit die Weiterverwendbarkeit dieser Elemente innerhalb der Prozesskette möglich ist“ [VDA 4955]. Man kann diese Definition auf andere Eigenschaften der Geometrieelemente erweitern, die nicht unbedingt unter numerischen Anforderungen fallen, wie zum Beispiel das Vorhandensein eines Volumenmodells oder die Art der Geometrie.
Semantische Qualitätsanforderungen: Viele Anforderungen an CAD-Modelle können kaum in einer formalen Sprache ausgedrückt werden. Das sind beispielsweise semantische (Semantik: Bedeutungslehre) Anforderungen an die Modellierungsvorgehensweise zur Erfüllung von Konstruktionsabsichten. Man kann diese Anforderungen grob in folgende Gruppen einteilen:


- Anforderung der Modellierungsabsichtserfüllung: Vor jeder Modellerzeugung werden an das CAD-Modell Anforderungen gestellt, wie die Endgestalt aussehen soll. In vielen Fällen können jedoch diese Anforderungen mit den Möglichkeiten des vorhandenen CAD-Systems oder wegen anderer Faktoren (fehlende Erfahrung, hoher Zeitdruck) nicht vollständig realisiert werden.


Übergreifende Qualitätsanforderungen: Diese Anforderungen sind für die CAD-Modelle nicht spezifisch; Obwohl sie in meist Fällen als Zusatz zu anderen Anforderungen angewendet werden, können trotzdem eine sehr wichtige Rolle spielen. Besonders bei Ingenieuren finden oft nur technische Anforderungen Berücksichtigung, so dass diese wichtigen übergreifenden (nicht technischen) Anforderungen außer Acht gelassen werden.

• **Zeitliche** Qualitätsanforderungen: Die effektive Modellnutzung im Produktentstehungsprozess erfordert eine pünktliche Modellbereitstellung. Diese Qualitätsanforderung ist fest mit anderen gekoppelt, weil ansonsten ein fehlerfreies Modell, das nicht termingerecht bereitgestellt wurde, von Modellkunden oft nicht mehr verwendet werden kann.

• **Wirtschaftliche** Anforderungen: Es muss immer beachtet werden, dass jegliche methodische Konstruktion beträchtliche Kosten verursacht, so dass ein Gleichgewicht zwischen dem Zeitaufwand für die methodische Modellierung und den Gesamtproduktkosten eingehalten werden soll. Anders formuliert: Zwar kann der Aufwand für die CAD-Methodik in die Höhe getrieben werden, irgendwann steht dies jedoch in keinem Verhältnis zum Nutzen des erstellten hochqualitativen CAD-Modelles.


### 2.4 Grundlagen des Qualitätsmanagements

#### 2.4.1 Qualitätsmanagement

Qualitätsmanagement hat im letzten Jahrhundert in der modernen Produktion immer mehr an Bedeutung gewonnen. Das Qualitätsmanagement ist eine Querschnittsdisziplin und dient der Analyse, Prüfung, Beurteilung und Regelung der Qualität materieller und immaterieller

Abbildung 19: Entwicklung des Qualitätsmanagements (in Anlehnung an [Hann00])

Die Bestandteile (oft auch die Grundfunktionen oder Teilkonzepte genannt) des Qualitätsmanagements sind [ISO9000]: Qualitätspolitik, Qualitätsziele, Qualitätsplanung, Qualitätslenkung, Qualitätssicherung und Qualitätsverbesserung. In einem konkreten Fall in der Praxis können noch weitere Bestandteile hinzukommen (z. B. Qualitätsaudit) oder auch die erwähnten Module wegfallen (z. B. in einem Handwerksbetrieb, in dem die Qualitätssprüfung
meistens völlig ausreichend ist). Die wichtigsten Bausteine des Qualitätsmanagements werden im Folgenden kurz beschrieben:

Die **Qualitätsplanung** ist nach EN ISO 9000 ein Teil des Qualitätsmanagements, der auf das Festlegen der Qualitätsziele und der notwendigen Ausführungsprozesse sowie der zugehörigen Ressourcen zur Erfüllung dieser Qualitätsziele gerichtet ist [ISO 9000]. Die wichtige Aufgabe der Qualitätsplanung ist das Auswählen, Klassifizieren und Gewichten von Qualitätsmerkmalen sowie die Aufstellung einer Anforderungsspezifikation bzw. eines Pflichtenheftes [Hann00]. Diese Phase spielt deshalb eine besonders wichtige Rolle, weil hier maßgeblich die Kosten für die späteren Phasen festgelegt werden. Die Instrumente der Qualitätsplanung sind als Qualitätsmethoden bekannt und werden in späteren Kapiteln separat behandelt.


---

13 In der Norm DIN EN ISO 9000 wird die Qualitätslenkung auf Englisch als „quality control“ übersetzt, was oft für Verwirrung sorgt, weil unter „control“ oft die Q-Prüfung und nicht die Q-Lenkung verstanden wird.
Nach EN ISO 9000 ist **Qualitätsverbesserung** definiert als ein Teil des QM, der auf die Erhöhung der Fähigkeit zur Erfüllung der Qualitätsanforderungen gerichtet ist. Die **Qualitätsverbesserung** konzentriert sich auf die Weiterentwicklung des Unternehmens in Richtung höherer Qualität. Die wichtigste Rolle spielen dabei die humanen Faktoren, wie z. B. Qualifikation und Motivation. Diese Aufgabe ist in jeder Organisation eine Daueraufgabe. Sie sollte sich auf alle Produkte und Prozesse erstrecken, wobei der zu erwartende Erfolg im Vergleich zum nötigen Aufwand zu beachten ist [Wien05]. Voraussetzung hierfür ist, dass die Leistungen messbar bleiben, weil nur so beurteilt werden kann, ob eine Veränderung eine Verbesserung oder eine Verschlechterung bedeutet [ReLH96].

Abbildung 20 zeigt die Bildung eines operativen und evolutionären Qualitätsregelkreises aus den beschriebenen Bestandteilen. Die Qualitätspolitik (Q-Politik) ist ein integraler Bestandteil der Unternehmenspolitik. Die festzulegenden Qualitätsziele ergeben sich aus der Qualitäts-Politik und müssen messbar sein [Wien05].

Fertigungsprozesse und Fehlerverhinderung stehen im Mittelpunkt des operativen Regelkreises. Der evolutionäre Regelkreis führt auf Basis von Erkenntnissen und Resultaten aus der Fertigung zu Verbesserungen, die wieder in die Qualitätsplanung einfließen. Vergleichend kann man sagen, dass der operative Regelkreis die Fehler in der Gegenwart und der evolutionäre Regelkreis die Fehler in der Zukunft verhindert [Hann00].

Die Grundgedanken des umfassenden Qualitätsmanagements kann man wie folgt zusammenfassen:

- Qualitätsmanagement liegt in der Verantwortung aller Ausführungsebenen [DIN8402], muss jedoch von dem Top-Management angeführt werden. Die wichtigsten Aufgaben des Top-Managements sind die Festlegung der Qualitätspolitik, der Qualitätsziele und der Verantwortlichkeiten. Die Führung schafft die Umgebung, in der sich die Mitarbeiter für die Erreichung der Ziele einsetzen können [Wagn03].
Im Mittelpunkt des Qualitätsmanagements steht nicht nur die Prüfung, sondern die **Prävention** von Fehlern. Es muss der Grundsatz gelten: Fehlervermeidung statt Fehlerbehebung [HeTB99].

Erforderlich ist eine system- und prozessorientierte Vorgehensweise, bei der die Unternehmensprozesse nicht einzeln, sondern als ein komplettes System betrachtet werden [Wagn03]. Das Herangehen an die Entscheidungen muss sachlich sein, so dass die Entscheidungen aufgrund einer logischen Analyse von Daten und Informationen entstehen.

**Motivation** der Mitarbeiter für die Arbeit und die verbesserte Kommunikation aller am Prozess Beteiligten sind Voraussetzung für die Qualitätsverbesserung.


- Qualität orientiert sich am Kunden.
- Qualität wird mit Mitarbeitern aller Bereiche und Ebenen erzielt.
- Qualität umfasst mehrere Dimensionen, die durch Kriterien operationalisiert werden müssen.
- Qualität ist kein Ziel, sondern ein Prozess, der nie zu Ende ist.
- Qualität setzt aktives Handeln voraus und muss erarbeitet werden.

### 2.4.2 Qualitätsmanagementmethoden


Dabei haben die Verfahren unterschiedliche Schwerpunkte in der Anwendung. Abbildung 21 zeigt auf, in welcher Phase des Produktlebenszyklus diese Methoden gegenwärtig Anwendung finden. Diese Verfahren sind gemäß deren Einsatzphase im Produktlebenszyklus der physischen Produkte aufgeteilt worden. Wichtig ist, dass in dieser Arbeit ein 3D-CAD-
Modell als ein Produkt betrachtet wird. Es ist nicht das Ziel dieses Kapitels, eine umfassende Übersicht über Qualitätsmethoden zu erstellen.

Abbildung 21: Ausgewählte QM-Methoden (in Anlehnung an [HeTB99])


Fehlermöglichkeits- und Einflussanalyse (FMEA)


Die im Team durchgeführte Methode bedient sich dabei eines Standard-Formulars, das die folgende Form hat (Abbildung 22):

![Abbildung 22: Formblatt für die Durchführung einer FMEA](image)


\(^{14}\) Die meisten FMEA-Analysen werden heute mit entsprechenden Software-Systemen durchgeführt, so dass dieses „Formblatt“ auch elektronisch ausgefüllt werden kann.
RPZ = A x B x E = \textit{Wahrscheinlichkeit des Auftretens} \times \textit{Bedeutung der Folgen} \times \textit{Wahrscheinlichkeit der Entdeckung}


\textit{Quality Function Deployment (QFD)}


Die gesamte, in dieser Aussage steckende Methodik drückt sich in einem Hilfsmittel, dem sogenannten „House of Quality“ (Abbildung 23), aus. Dieses Qualitätshaus ermöglicht eine klare Spezifizierung von Kundenanforderungen und Bedürfnissen sowie die systematische Untersuchung aller Gestaltungsmerkmale bezüglich ihrer Bedeutung für die Erfüllung dieser Anforderungen.


Die Ergebnisse des Planungsverfahrens sind Qualitätsziele, die in so genannten Qualitätsvereinbarungen oder in einem Pflichtenheft mit den beteiligten Personen umgesetzt werden können. Eingebettet in den jeweiligen Führungsstil eines Unternehmens kann das QFD-Formular im Rahmen einer betriebseitigen Debatte erstellt werden oder ein Planungswerkzeug in den Händen der obersten Führungsebene sein.

Abbildung 23: Exemplarische Darstellung des QFD


**Design Review / Designprüfung**


Am Design Review beteiligen sich Mitarbeiter mit verschiedenen Funktionen und aus unterschiedlichen Abteilungen, wobei deren Teilnahme je nach der Phase des Entwicklungsprozeks variiert. Das Endergebnis eines Design Reviews ist ein Maßnahmenkatalog, der aufgrund der festgestellten Abweichungen erstellt wird [SeHa93].

**Benchmarking**

Benchmarking ist ein Ansatz zur Messung und zum Vergleich der eigenen Produkten, Dienstleistungen und Prozesse mit Wettbewerbern oder anderen internen Organisationseinheiten, die als Klassenbeste (oft Best-In-Class genannt) bezeichnet werden [KaBr02]. Mit Benchmarking sollen deren Qualitätsunterschiede zu dem eigenen Unternehmen oder der eigenen Organisationseinheit erkannt werden. Darüber hinaus kann mit dieser Methode ermittelt werden, welche Kundenanforderungen relevant sind und wie diese
erfüllt werden können [Bruh04]. Grundsätzlich lassen sich zwei Arten des Benchmarkings unterscheiden:

- **Internes Benchmarking**: Bei dieser Art wird zwischen unterschiedlichen Einheiten (wie z. B. verschiedenen Standorten, Abteilungen oder Arbeitsplätzen) verglichen. Der große Vorteil des internen Benchmarkings ist die einfache Durchführbarkeit. Als wichtige Nachteile sind der begrenzte, auf das eigene Unternehmen ausgerichtete Blickwinkel, interne Barrieren und das oft vorhandene Abteilungsdenken zu nennen [KaBr02].


<table>
<thead>
<tr>
<th>Planung</th>
<th>Analyse</th>
<th>Integration</th>
<th>Umsetzung</th>
<th>Perfektionierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektidentifikation</td>
<td>Datensammlung</td>
<td>Kommunikation und Akzeptanzerringung der Ergebnisse</td>
<td>Planung der Umsetzung</td>
<td>Anstrebung der Spitzenposition</td>
</tr>
<tr>
<td>Partneridentifikation</td>
<td>Identifikation der Leistungslücken</td>
<td>Bestimmung konkreter Ziele</td>
<td>Umsetzung</td>
<td>Integration des Benchmarkings in die Prozesse</td>
</tr>
<tr>
<td>Bestimmung der Methoden zur Datensammlung</td>
<td>Festlegung der Leistungsstandards</td>
<td>Überwachung der Fortschritte</td>
<td>Überprüfung der Ergebnisse</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 24: Phasen des Benchmarkings (in Anlehnung an [KaBr02])

Eine wichtige Einschränkung dieses Verfahrens sind die zunächst eher vergangenheitsorientierten Ergebnisse [KaBr02]. Hier kommt der Abschätzung von zukünftigen Entwicklungen, wie sie in der Analysephase vorgenommen werden können, eine strategische kompensierende Bedeutung zu.

**Poka-Yoke**


- Eine Qualitätskontrolle soll Fehler schon am Ort ihrer Entstehung identifizieren.
- Eine 100%ige Inspektion soll eine völlige Fehlerfreiheit sicherstellen.
- Unmittelbares Eingreifen bei Entdeckung eines Fehlers ermöglicht die Fehlerbehebung und vermeidet, dass weitere Fehler entstehen.


**Pareto-Diagramm / ABC-Analyse**

Die Pareto-Analyse dient im Rahmen des Qualitätsmanagements zum einen zur Identifizierung von Ursachen, die am stärksten zu einem Problem führen, und zum anderen zu deren Trennung von den „vielen kleinen Ursachen“. Auftretende Probleme sind oft so zahlreich, dass es nicht auf Anhieb klar ist, in welcher Reihenfolge sie behandelt werden sollten [KaBr02]. Das Pareto-Diagramm verdeutlicht, welche Ursachen als Erstes beseitigt werden müssen, um ein Problem schnell zu lösen. Der Erfinder dieses Analyseverfahrens, Pareto, hat empirisch festgestellt, dass die meisten Auswirkungen/Kosten (ca. 80 %) nur 20 bis 30 Prozent der Probleme als Grund haben. Juran prägte dafür den Ausdruck „vital few, useful many“ [Jura89]. Die wichtigsten 20 Prozent der möglichen Ursachen bezeichnet Juran als die „vital few“ (entscheidende wenige), die übrigen Ursachen als die „useful many“ (nützliche viele) [KaBr02, Jura89]. Bei der Pareto-Analyse werden Daten (z. B. Fehlerarten) nach einem festgelegten Ordnungskriterium (z. B. Häufigkeit) geordnet und als Säulen in ein Diagramm eingetragen.
<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Wertanteil</th>
<th>Mengenanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A wichtig / hochwertig</td>
<td>ca. 60 - 85 %</td>
<td>ca. 10%</td>
</tr>
<tr>
<td>B mittelwichtig / mittelwertig</td>
<td>ca. 10 - 25 %</td>
<td>ca. 20 - 30 %</td>
</tr>
<tr>
<td>C weniger wichtig / niedrigwertig</td>
<td>ca. 5 - 15 %</td>
<td>ca. 70 - 80 %</td>
</tr>
</tbody>
</table>

Abbildung 25: Einteilung in Klassen bei der ABC-Analyse

**Ishikawa-Diagramm**


Abbildung 26: Aufbau eines Ishikawa-Diagramms (nach [KaBr03])

Wie im Bild oben zu sehen ist, wird die Analyse oft mit den so genannten 6-M-Methoden ausgeführt [KaBr03, KaBr02]. 6-M steht für die Haupteinflussgrößen Mensch, Maschine, Methode, Material, Milieu (Umfeld) und Messung [KaBr03]. Die Verwendung dieser Einflussgrößen ist jedoch nicht vorgeschrieben und sollte jeweils angepasst werden.
Qualitätsregelkarten


Abbildung 27: Beispiel einer Qualitätsregelkarte

**Qualitätswerkshops**


**Sonstige Methoden**


- Sicherung der Wettbewerbsfähigkeit/Ausschreibungsbeteiligung,
- Zukunftssicherung für das eigene Unternehmen.

Wichtig ist dabei, dass mit diesen Normen nicht die Produktqualität festgelegt ist, sondern die Fähigkeit eines Unternehmens, Qualität zu erzeugen. Die Grundsätze dieser Normreihe sind:

- **Kundenorientierung,**
- **Führung,**
- **Einbeziehung von Personen,**
- **prozessorientierter Ansatz,**
- **systemorientierter Managementansatz,**
- **ständige Verbesserung sowie**
- **Lieferantenbeziehungen zum gegenseitigen Nutzen.**

Der Nutzen dieser Normreihe liegt vor allem in der Standardisierung der Vorgänge, wodurch Modelle in vielen Fällen systematischer entstehen und auch bei einer späteren Änderung ihr Aufbau einfacher nachvollzogen werden kann. Die Normreihe kann in der Methode nicht alleine, sondern als Unterstützung der Abläufe anderer Techniken eingesetzt werden.

Oft werden Checklisten als ein eigenständiges Werkzeug des Qualitätsmanagements verstanden [SeHa93], die sie sehr gut als ein Tool zur Faktenerfassung angewendet werden
können. Sie gewährleisten eine gewisse Systematik bei sich wiederholenden Vorgängen und werden in meisten Fällen als Erinnerungshilfe, Überprüfungsachtweis oder auch als Hilfe bei komplexeren Vorgängen benutzt [SeHa93]. Insbesondere können sie dem Vergessen einzelner Aspekte vorbeugen.

**Festgestellte Probleme beim Einsatz der Methoden**

Zusammenfassend lassen sich folgende Probleme beim Einsatz der beschriebenen Qualitätsmethoden feststellen [Voss99]:

- Häufig wird das Kosten-Nutzen-Verhältnis aufgrund des hohen Aufwandes sowohl bei der Einführung vieler Verfahren als auch bei der Durchführung als schlecht beurteilt.
- Oft verzögern unvollständige Informationen in der Planungsphase der Verfahren die Durchführung und stellen auch die Validität der darauf aufbauenden Ergebnisse in Frage.
- Bei vielen Verfahren führen insbesondere die Kommunikationsprobleme aufgrund unterschiedlicher Begriffsverständnisse und auch von Kompetenzstreitigkeiten zu hohen Reibungsrisiken.
- Meistens scheitert die planmäßige und systematische Ausführung der Methoden am hohen Formalisierungsgrad und der damit verbundenen Komplexität und fehlenden Akzeptanz durch die Projektbeteiligten.

Keine der Methoden wird in der Praxis oder in der Forschung für das Qualitätsmanagement der CAD-Modelle eingesetzt. Dies liegt daran, dass die CAD-Modelle meistens nicht als eigenständige Produkte (hergestellt von dem CAD-Konstrukteur) betrachtet werden, sondern als ein Werkzeug der Produktentwicklung, dessen Möglichkeiten durch Schulungsmaßnahmen und Normung ausgeschöpft werden können. Nur die Unternehmen, die festgestellt haben, dass die Nachbearbeitung in der rechnerintegrierten Prozesskette zu zeitaufwendig ist, entwickeln die ersten Ansätze der Qualitätsprüfung der CAD-Modelle, die aber noch nicht umfassend sind.
3 Anforderungen an das Qualitätsmanagement der CAD-Modelle

In diesem Kapitel werden Anforderungen an die Methodik für das Qualitätsmanagement der CAD-Modelle und an die damit verbundenen Softwarewerkzeuge aufgestellt. Qualitätsmanagement hat nur dann eine Chance, in der Praxis erfolgreich eingesetzt zu werden, wenn es die wichtigsten Systemanforderungen und die vielseitigen Gesichtspunkte der Anwendbarkeit berücksichtigt. Aus diesem Grund soll der Anforderungskatalog an die Methodik in einige Unterpunkte unterteilt werden (Abbildung 28). Dies sind zum einen allgemeine Anforderungen an die Methodik, die insbesondere qualitätsbezogene Aspekte beachten, zum anderen Anforderungen an die unterstützenden Werkzeuge, wie z. B. Softwaresysteme. Problemkomplexität und -umfang erfordern auch die Aufstellung der nichttechnischen Anforderungen, die sich weiterhin in betriebswirtschaftliche und menschenbezogene Kategorien gliedern lassen. Der Anforderungskatalog wird sowohl für die Entwicklung der neuen Methode als auch für die Bewertung der im Kapitel 4 recherchierten Ansätze Verwendung finden.

Abbildung 28: Aufbau des Anforderungskataloges

3.1 Allgemeine Anforderungen an die Methodik

An die Methodik lassen sich folgende allgemeine Anforderungen stellen:

A1: Nachweisbare Reduzierung der Modellnachbearbeitungszeiten bei Modellkunden: Die Verbesserung der Modellqualität in Form der Nachbearbeitungsminimierung ist das primäre Ziel dieser Methodik.

A2: Verbesserung der numerischen und organisatorischen Qualität: Das sekundäre Ziel ist die Verbesserung anderer Qualitätsarten von CAD-Modellen.

A3: Identifikation der Modellkunden: Für ein effektives Qualitätsmanagement der digitalen Modelle ist es erforderlich, die Nutzer (Modellkunden) der Modelle zu kennen.
A4: Akquisition, Verwaltung und Visualisierung der Qualitätsanforderungen: Die Erfüllung der Qualitätsanforderungen an die CAD-Modelle spiegelt die Modellqualität wieder. Deshalb stehen die Handhabung, aber auch der Akquisitionsprozess der Qualitätsanforderungen im Mittelpunkt der Methodik.

A5: Verwendung von Qualitätsmanagementmethoden: Durch den Einsatz dieser Methoden bzw. von ausgewählten Aspekten können einerseits die Erfahrungen aus anderen Bereichen in der Methodik Berücksichtigung finden, andererseits besteht die Möglichkeit, die Akzeptanz durch klare Erkennbarkeit anerkannter Qualitätswerkzeuge zu steigern.


A8: Integration in die virtuelle Produktentwicklung und Konstruktionsmethodik: Die zu entwickelnde Methodik versteht sich als Erweiterung und Ergänzung der vorhandenen Konstruktionsmethodiken. Dies macht die Integration in die virtuelle Produktentwicklung unabdingbar, wodurch auch ein zusätzlicher Mehrwert entstehen kann.


A11: Produktneutrale Formulierung: Die Methodik soll so entwickelt werden, dass die Anwendung nicht an eine bestimmte Produktgruppe gebunden ist.

3.2 Anforderungen an unterstützende Werkzeuge

Unter dem Begriff Werkzeuge werden Hilfsmittel (meistens Softwaresysteme) verstanden, die den Konstrukteur bei der methodischen Vorgehensweise zur Modellerstellung, Weiter- und Wiederverwendung unterstützen. Insgesamt können folgende Anforderungen an die Entwicklung von Werkzeugen identifiziert werden:

A12: Einbeziehung vorhandener IT-Engineering-Werkzeuge: Eine Bedingung für die Minimierung der Implementierungskosten und Erhöhung der Akzeptanz ist die Verwendung
vorhandener Softwaresysteme, die routinemäßig benutzt werden, wie z. B. CAD- oder PDM-Systeme.

A13: Aufruf aus operativen technischen Systemen: Der Aufruf der Qualitätswerkzeuge soll einfach aus dem CAD-System möglich sein. Dies ist durch eine geeignete Add-on-Struktur zu realisieren.


A16: Verwendung eines Teils der Anwendung als Agent / Wizard: Die Anwendung soll u.a. unsichtbar im Hintergrund ablaufen und die Qualitätsanforderungen prüfen.


3.3 Nichttechnische Anforderungen

Die nichttechnischen Anforderungen, die zwei weitere wichtige Aspekte, die Betriebswirtschaft und den Menschen, in der Produktentwicklung berücksichtigen sollen sind:

A18: Reduzierung der gesamten Produktentwicklungskosten: Der Einsatz der Methoden und der entsprechenden IT-Werkzeuge ist nur dann sinnvoll, wenn dadurch die Kosten der Produktentwicklung reduziert werden.

A19: Geringe Anfangsinvestitionen: Die Anwendung in kleineren Firmen wird nur dann möglich sein, wenn die Investitionskosten nicht sehr hoch sind und der so genannte Break-Even-Point in überschaubarer Zeit erreichbar ist.


A21: Steigerung der Motivation bei Anwendern: Damit die Mitarbeiter bereit sind, Qualitätsmethoden und -funktionen anzuwenden und die festgelegten Ziele zu verfolgen, ist es erforderlich, geeignete Motivationsmaßnahmen zu entwickeln.
4 Stand der Forschung und der Technik beim Qualitätsmanagement von CAD-Modellen

4.1 Relevante Forschungsansätze im Umfeld der Qualitätsverbesserung und der methodischen Modellierung der CAD-Modelle

Es gibt zurzeit keine übergreifenden Forschungsansätze zum ganzheitlichen Qualitätsmanagement von CAD-Modellen. Die wenigen vorhandenen Ansätze konzentrieren sich entweder auf spezielle Aspekte der Modellierung (z. B. Datenaustausch) oder auf die Optimierung der Modellierung. An dieser Stelle sollen die Ansätze analysiert werden, die einen Bezug zum Thema der Arbeit aufweisen und in einigen Fällen bei der Konzipierung der Methodik teilweise verwendet werden können. Dabei werden sowohl die Ansätze von einzelnen Autoren als auch ausgearbeitete Konzepte aus Forschungsprojekten vorgestellt.

4.1.1 Ansatz von Meissner


4.1.2 Ansatz von Mendgen

Im Mittelpunkt der Arbeit von Mendgen [Mend99] steht die methodische Vorgehensweise zur Modellierung in CAD-Systemen und die Entwicklung von Werkzeugen zur Unterstützung dieser Vorgehensweise. Die Methoden konzentrieren sich auf die allgemeinen konstruktionsmethodischen Vorgehensweisen im Bereich der Gestaltung (Modellierung der
3D-CAD-Modelle). Diese Vorgehensweisen ergänzen die allgemeinen Gestaltungsprinzipien. Ähnlich wie bei Meissner wurden allgemeine Gestaltungsrichtlinien entwickelt, welche der Realisierung der aufgestellten Modellierungsprinzipien dienen. Interessant ist seine Vorgehensweise bei der Aufstellung einer Richtlinie zur erweiterten Ermittlung der Anforderungen an die CAD-Modelle, wobei die Weiterverwendung in späteren Phasen im Mittelpunkt steht. Zu der Analyse wurde die Methode SADT genutzt, mit der Mendgen\textsuperscript{15} direkt die einzelnen Tätigkeiten, Informationsflüsse und steuernden Größen analysiert. Die Anforderungen aus unterschiedlichen Prozessketten teilt Mendgen in drei verschiedene Klassen:

- Flexibilität der Gestalt bei unveränderter Modellrepräsentation
- Ableitung reduzierter/vereinfachter Modellrepräsentationen
- Konvertierung von Modellrepräsentationen

Mendgen entwickelte auch ein Assistenzsystem, welches den Konstrukteur bei der methodischen Modellierung durch die Bereitstellung von Werkzeugen zur Analyse von Modellstrukturen, zur Modelldatenaufbereitung für die effektive Weiterverwendung in rechnerintegrierten Prozessketten sowie zur Überprüfung der Einhaltung der methodischen Vorgehensweisen unterstützt [Mend99]. Er überprüft die Einhaltung von Richtlinien in den Bereichen Anforderungseinhaltung, Semantik, Strukturierung und Komplexität. Allerdings ist Mendgen der Meinung, dass diese Richtlinien kaum rechnerunterstützt überprüft werden können. Mendgen nutzt keine QM-Methoden; seine Ansätze können zwar sehr gut auf die CAD-Modellierung angewendet werden, spiegeln aber nicht die Anforderungen der Modellnutzer wieder.

**4.1.3 Ansatz von Schenke**

Schenke [Sche01] untersuchte in seiner Arbeit die parametrische CAD-Konstruktion und stellte eine Methodik für ihre Optimierung auf. Seine Methodik umfasst ein parametrisches Produktdatenmodell, eine Methode zur parametrischen Produktgestaltung und die entsprechenden Softwareprototypen.

Auf Basis des Produktmodells wurde die Methode zur parametrischen Produktgestaltung entwickelt. Schenke stellt diese Methode aus phasenbezogenen Ablaufmodellen, Fuzzy-Constraint-Netzwerken sowie Modellierungsargumenten zusammen. Hier geht der Autor insbesondere auf die Abbildung der Unsicherheiten und ihre Integration in die frühe Phase des parametrischen Gestaltens ein. Dabei konzentriert sich Schenke auf die Berücksichtigung der Unsicherheiten bei einzelnen Modellparametern und Constraint-Beschreibungen. Weiterhin wurde ein Konzept der Modellierungsargumente entwickelt, um die Modelle zu standardisieren und transparent zu gestalten. Unter Modellierungsargumenten versteht

\textsuperscript{15}Mendgen führte im Rahmen seiner Arbeit eine ausführliche Prozesskettenanalyse am Beispiel der Entwicklung von Motorsteuergeräten durch.
Schenke eine Auswahl von möglichen Lösungen für konkrete Anwendungsfälle. In diesem Bereich werden Ansätze des Wissensmanagements benutzt. Auch die Arbeit von Schenke bietet keine Möglichkeit, die Modellqualität ganzheitlich zu verbessern, sondern nur auf einem engen Bereich (Parametrik) zu optimieren.

4.1.4 Ansatz von Claassen

Claassen [Claa02] untersuchte in seiner Arbeit das Iterationsmanagement in der virtuellen Produktentwicklung, bei dem das 3D-CAD-Modell im Mittelpunkt steht. Dafür untersuchte er ausführlich die Verwendung der CAD-Daten in den Prozessketten der Produktentwicklung. Als Ergebnis leitete er unterschiedliche Abstraktionsstufen der Klassifizierung der CAD-Änderungsprozesse ab, die auch als grundsätzliche Einflussgrößen der Modellweiterverwendung betrachtet werden können. Diese Ebenen sind z. B. für Einzelteile [Claa02]:

- 1. Ebene: Voreinstellungen (Einheiten, Materialeigenschaften, Toleranzen)
- 2. Ebene: Methode der Modellierung (Featurebasiert, skizzenbasiert, freiformflächenbasiert)
- 3. Ebene: Reihenfolge der Modellierung
- 4. Ebene: Iterationen an Konstruktionselementen (dimensionsbezogen, konstruktionsbezogen, kosmetischbezogen)


4.1.5 Ansatz von Janitza


### 4.1.6 Ansatz von Gerkens


### 4.1.7 Forschungsverbundprojekt iViP

Viele Teilprojekte strebten eine bessere CAD-Modellverwendung an (z. B. für Ein- und Ausbausimulationen, Virtual Reality etc.), ohne dass auf die methodische Modellerzeugung eingegangen wurde. Zum Beispiel wurden im Teilprojekt „Integrierte Topologie- und Gestaltoptimierung im Konstruktionsprozess“ die Prozessketten CAD > Simulation > Topologieoptimierung > Gestaltoptimierung > CAD entwickelt und optimiert. Der Einfluss der Modellierungsvorgehensweise bei der Generierung eines CAD-Modells auf dessen Nutzbarkeit wurde nur geringfügig berücksichtigt [Meis00].

4.1.8 Forschungsprojekt ANICA


Das Projekt bezog sich ausschließlich auf den optimierten Datenaustausch der CAx-Daten in unterschiedlichen CAx-Systemen. Die weiteren Aspekte der Modellqualität und die Modellierungsmethodik waren nicht der Bestandteil des Projektes.

4.2 Verbesserung der Modellqualität durch Normung und Richtlinien

Werk mehrere Anforderungen an die Modelldetailsierung und auch Modellstruktur in verschiedenen Darstellungen nutzt.

Die VDI-Richtlinie 2209 (Informationsverarbeitung in der Produktentwicklung: 3D-Produktmodellierung) ist im Entwurf vorhanden und versucht einen Beitrag zur Integration der CAD-Methodik in den kompletten Entwicklungsprozess zu leisten. Im Mittelpunkt stehen hauptsächlich: Modellierungsmethoden, Modellierungsstrategien, Modellverwendung [Vajn01].

Das Hauptziel der verbreiteten VDA-Empfehlung 4955/2 [VDA 4955] ist die Verringerung von Nachbearbeitungszeiten und -kosten von CAD-Prozessen durch den Informations- und Erfahrungsaustausch, die Definition firmenübergreifender, gemeinsamer Qualitätskriterien, die Initiierung von sowohl möglichst CAD-System-neutrale Prüfprogrammen und Reparaturhilfen als auch von häufig verwendete Systemen oder Systempaarungen. Die Empfehlung ist in folgende Bereiche aufgeteilt [VDA 4955]:

- Geometrische Datenqualität
- Organisatorische Datenqualität
- Empfehlungen zu Absprachen zwischen Datenaustauschparteien
- Empfehlungen zu dem Umfang der CAD-Modelle

Die Konvertierungs- und Prüfsysteme können sich durch VDA nach dieser Empfehlung zertifizieren lassen, wobei die verschiedenen Prüfwerkzeuge mit unterschiedlichen Testmodellen aus der Praxis verglichen werden, um die Zuverlässigkeit und Konsistenz der Prüfergebnisse zu gewährleisten.

4.3 Analyse vorhandener Software-Werkzeuge zur CAD-Qualitätsprüfung

Die einfache Prüfbarkeit der meisten numerischen und geometrischen Eigenschaften rief eine Vielzahl an entsprechenden Werkzeugen hervor\(^\text{16}\). Man kann diese Softwarewerkzeuge in unterschiedliche Gruppen je nach Programmart und Funktionen klassifizieren.

4.3.1 Eingebaute Funktionen in CAD-Systemen

Fast jedes moderne CAD-System bietet eine Reihe von Funktionen für die Kontrolle und in einigen Fällen Verbesserung der Modellqualität. Auf der einen Seite sind das CAD-Programme, die Funktionen zur Überprüfung der CAD-Daten anbieten, und auf der anderen Seite die Anwendungssysteme, die CAD-Daten nutzen und deshalb auf eine gute Datenqualität angewiesen sind.

Als Beispiel für CAD-Funktionen sollen an dieser Stelle einige Funktionen der in dem 3D-CAD-System NX4 eingebauten Module Check-Mate und Quick-Check aufgezeigt werden. Mit dem Check-Mate ist es möglich, auf unterschiedliche numerische, geometrische und einige formale semantische Kriterien (wie z. B. die Nutzung einiger vorgegebener Vorlagen) zu prüfen (siehe Abbildung 29). Darüber hinaus ist die Prüfung nach VDA 4955 möglich.

Abbildung 29: Programmoberfläche des Moduls Check-Mate in NX4

Mit dem Quick-Check ist es möglich, in das CAD-Modell einfache Regeln einzubauen (wie z. B. Prüfung der Abstände zwischen zwei Elemente oder Prüfung der zulässigen Maße). Weiterhin besteht die Möglichkeit, mit dem Wissensmodul „Knowledge Fusion“ benutzerdefinierte Regeln zu definieren, wobei eine NX-spezifische Programmiersprache benutzt wird, die spezifische Bibliotheken für den Zugriff auf die Modellgrößen und -

---

\(^{16}\) Solche Programme werden meistens als Qualitätschecker (Ziel: Überprüfen der Modellqualität) und Healing-Tools (Ziel: Verbesserung der Modellqualität und Beseitigung der Fehler) bezeichnet.
elemente anbietet. Insgesamt erschwert dies die Nutzung, weil die Tests nur von einem speziellen Programmierer erstellt werden können.

Zusammenfassend lässt sich sagen, dass alle diese Werkzeuge gute Möglichkeiten anbieten, formale numerische und geometrische Kriterien zu prüfen. Allerdings muss dem Konstrukteur klar sein, welche Kriterien wichtig sind. Eine Verarbeitung der Modellkundenanforderungen zu prüfbaren Kriterien bieten die Funktionen nicht, sie können höchstens die elementaren Anforderungen überprüfen. Weiterhin bieten die Funktionen keine Verbesserungsvorschläge oder Heilungsfunktionen an.

Als ein Beispiel für Nicht-CAD-Programme kann hier das System HyperWorks erwähnt werden, das sehr viele fortgeschrittene Funktionen für die Analyse, Nachbearbeitung und Änderung der CAD-Modelle in unterschiedlichen Formaten mit dem Zweck der Weiterverwendung in FEM-Systemen anbietet. So wird zum Beispiel bereits beim Importieren eine automatische Topologieerkennung zur Reduktion freier Kanten durchgeführt und eine evtl. vorhandene Gliederung der Geometriedaten durchgeführt. Mit weiteren Funktionen (u.a. Mittelflächengenerierung und automatische Geometriebereinigung) kann die importierte Geometrie aufbereitet und modifiziert werden, um bereits im frühen Stadium der FEM-Modellerstellung eine möglichst optimal auf die FEM-Bedürfnisse ausgerichtete Vernetzung zu gewährleisten.

4.3.2 Eigenständige Programme

Zusätzlich zu eingebauten Funktionen existiert eine Reihe von eigenständigen Programmen, die auf die Qualitätsprüfung der CAD-Modelle spezialisiert sind. Wegen der hohen Spezialisierung der Software bieten sie in den meisten Fällen eine größere Auswahl an Prüffunktionen als eingebaute Funktionen. Unabhängig davon, ob diese Programme native Modelle oder neutrale Datenaustauschmodelle prüfen, kann man sie in folgende Gruppen einordnen:

- **Qualitätschecker** mit oder ohne Healing-Funktion\(^\text{17}\).
- **Healing-Tools**: Diese Tools erlauben die Manipulation der Geometrie und Topologie der geometrischen Modelle\(^\text{18}\).
- **Konvertierungsoftware\(^\text{19}\) mit Healing-Funktionen**: Die Systeme konvertieren und korrigieren meistens einzelne CAD-Geometrien sowie Baugruppen-Strukturen.

Insbesondere im Bereich der CAD-Konstruktion existiert eine Reihe von Werkzeugen, die unterschiedliche Aspekte der CAD-Modellqualität prüfen und/oder verbessern. Die Entwicklung dieser Werkzeuge wurde durch die Automobilindustrie forciert, die den Einsatz solcher Tools als Pflicht für ihre Zulieferer einführt. Als auf vielen Einsatzgebieten ein sehr

\(^{17}\) Vertreter sind Q-Checker, I/Check, DesignQA, CADIQ, PE-Check, MODELCheck und Validat.

\(^{18}\) Vertreter sind die Programme CADhealer und CADdoctor.

\(^{19}\) Vertreter sind die Programme CADfix, Trans3D, TransMagic und CAD2X.

Die besondere Eigenschaft von Q-CHECKER ist, dass das Programm sich sehr tief in das Konstruktionssystem integriert und somit gezielt an den nativen Modellierungsdaten Änderungen vornehmen kann. Die prüfbaren Kriterien des Systems können grob in zwei Gruppen eingeteilt werden [Tran06]:

- **Strukturelle Prüfungen**: Der Struktur-Teil von Q-CHECKER ermöglicht die Untersuchung eines 3D-CAD-Modells auf seine Struktur hin, d. h. auf verschiedene nicht-geometrische Modelleigenschaften wie Namenskonventionen, erlaubte oder nicht erlaubte geometrische Elemente u. a.

- **Geometrie-Prüfungen**: Die Geometrie-Prüfungen ermöglichen die Untersuchung auf die Einhaltung einiger Standards (s. Kapitel 4.2) für geometrische Datenqualität, vor allem der VDA-Empfehlung 4955, SASIG, JAMA, ODETTE oder PDQ.

Abbildung 30: Programmoberfläche von Q-CHECKER

---

20 Q-CHECKER ist ein Prüfwerkzeug für das Konstruktionssystem CATIA v.4 und v.5 und kann nicht mit anderen Systemen eingesetzt werden.

Das Programm weist noch viele zusätzliche Funktionen auf. Sie sollen an dieser Stelle auch ebenfalls aufgeführt werden, weil die Ansätze ein wichtiges Input für die Konzipierungsphase dieser Arbeit geleistet haben [Tran06]:

- **Anwenderdefinierte Prüfkriterien**: Zusätzlich zu den vom Hersteller in Q-CHECKER integrierten Prüfkriterien können eigene, firmenspezifische Prüfungen eingefügt werden.

- **Prüfprofile und Prüfprotokolle**: Prüfprofile stellen die Zusammenfassung der Definitionen mehrerer Einzelprüfungen dar. Mit Prüfprofilen ist es möglich, unterschiedliche Prüfreihen für spezifische Zwecke vorzudefinieren (z. B. Prüfungen für bestimmte Erzeugnisse, Prüfungen für eingehende CAD-Daten oder für an bestimmte Hersteller weiterzugebende CAD-Daten u. a.).

- **Korrekturfunktion**: Bei einigen Kriterien besteht die prinzipielle Möglichkeit, festgestellte Mängel mit Hilfe der automatischen Korrekturfunktion (Healing) zu beheben.

- **Prüfsiegel**: Bei der Weitergabe von Modellen kann ein Prüfsiegel erzeugt werden. Durch Prüfsiegel kann ein anderes Unternehmen feststellen, ob die Modelle von den Lieferanten geprüft wurden.

- **Abbruchbedingungen**: Bei bestimmten Kriterien kann eine Verletzung derart schwerwiegend für die gesamte Konstruktion sein, dass schon eine einzige Verletzung das konstruierte Teil unbrauchbar macht. Solche für die Qualität besonders wichtigen Kriterien können als Abbruchkriterien definiert werden.

- **Fehleranalyse**: Die im Ergebnis des Prüflaufs bemängelten Elemente können mit den Werkzeugen von Q-CHECKER auf ihre Fehler hin genauer analysiert werden. Das sind unter anderem die Fehlerauflistung und die grafischen Hilfs- und Monitorings.
Flächenanzahl und Ausbesserung der Elementfehler. In allen Fällen arbeiten diese Werkzeuge mit Datenaustauschmodellen und können die Qualität der ursprünglichen nativen Modelle nicht verbessern.


Darüber hinaus stellen die automatischen Korrekturmöglichkeiten sogar eine gefährliche Fehlerquelle dar, weil sie erstens die Ursachen nicht beseitigen und zweitens Lösungsalgorithmen haben, die die Modellgestalt ändern können. Eine weitere Motivation für den Ausschluss eines generellen automatischen Korrigierens ist, dass der Konstrukteur lernen soll, Fehler selbst zu entdecken [Tran06].

### 4.4 Angewandte methodische Ansätze von Industrieunternehmen

Die vorhandenen, bei unterschiedlichen Unternehmen entwickelten methodischen Ansätze haben unterschiedliche Ziele. Als Erstes steht der effektive Datenaustausch im Mittelpunkt, sowohl firmenintern als auch zu Zulieferern und Kunden. Das weitere Ziel ist die Optimierung der Modellierung zwecks Verkürzung der Produktentstehungszeit. Diese Methodiken werden in meisten Fällen für ein konkretes 3D-CAD-Anwendungssystem entwickelt und enthalten viele firmenbezogene Bestandteile. Durch die im Rahmen dieser Arbeit in einem Forschungsprojekt durchgeführte Studie über die methodischen Ansätze großer Unternehmen können die wichtigen methodischen Modellierungsansätze je nach

---

21 An dieser Stelle werden die Methodiken nur allgemein beschrieben; eine konkretere Beschreibung darf aufgrund von Urheberrechten an dieser Stelle nicht aufgeführt werden. Aus demselben Grund werden auch keine Literaturquellen angegeben.

22 Im Rahmen einer Forschungskooperation mit einem Automobilzulieferer wurden im Rahmen eines Benchmarks die methodischen Ansätze, CAD-Handbücher und sonstige Unterlagen von sieben großen produzierenden Industrieunternehmen untersucht (vier Automobilhersteller, ein Flugzeughersteller, zwei große Automobilzulieferer).
Stand der Forschung und der Technik beim Qualitätsmanagement von CAD-Modellen

Schwerpunkt in Gruppen eingeteilt werden, die der Verbesserung der Modellqualität dienen können.


![](image)

Abbildung 31: Aufbau eines standardisierten 3D-CAD-Startmodells in dem CAD-System CATIA V.5

- **Konstruktive Ansätze**: Unter konstruktiven Ansätzen können Modellierungsmethodiken zusammengefasst werden, die optimale Vorgehensweisen in einem konkreten Anwendungssystem (oft für eine spezielle Problematik / spezielles Feld) vorschlagen. Die Beispiele dafür sind eine Methode zu der Fahrwerkmodellierung in einem CAD-System oder ein optimierter Vernetzungsworkflow in einem FEM-System. Diese Ansätze verbessern die Modellqualität erheblich, indem...
analysierte und optimierte Lösungswege angeboten werden. Der große Nachteil ist, dass sie oft entweder sehr allgemein und deshalb schwer anzuwenden sind oder für jede Bauteilfamilie ausgearbeitet werden müssen, was den Aufwand in die Höhe treibt.

- **Ansätze zur Prüfung der CAD-Modellqualität**: In dieser Gruppe konnten nur Ansätze zur softwartechnischen Kontrolle der CAD-Modelle festgestellt werden, die am meisten auf streng formale Kriterien eingehen. Alle Unternehmen nutzen dafür Softwarewerkzeuge, wie im Kapitel 4.3 beschrieben, und verfolgen kaum andere semantische Ansätze. Diese Standardwerkzeuge greifen sowohl auf die vorhandenen Normen (siehe Kapitel 4.2) als auch auf die firmeninternen Vorgaben zurück. Deshalb ist es kaum möglich, die ganzheitliche Modellqualität bzw. den Grad der Weiterverwendung zu prüfen. Nichtsdestotrotz können diese Ansätze zur Sicherung der numerischen Qualität verwendet werden.

- **Datenaustausch- und Archivierungsansätze**: Durch die system- und unternehmensübergreifende Produktentwicklung und -entstehung haben die meisten Unternehmen Datenaustauschstrategien entwickelt. Die meisten, besonders große, Firmen versuchen, den Datenaustausch über native CAD-Formate mit ihren Lieferanten zu erzwingen. Beim Datenaustausch spielen in allen untersuchten Firmen die vorgegebenen Richtlinien und die vor- und nachgelagerte Prüfung durch Qualitätscheckprogramme eine zentrale Rolle. In den meisten Fällen aber wird nur das Endergebnis des Austauschs optimiert und nicht der dazu führende fehlerhafte Modellierungsweg.

Keiner der untersuchten Unternehmensansätze bedient sich durchgängig einer Qualitätsmanagementmethode für die Erzeugung der CAD-Modelle. Viele Ansätze können zwar teilweise für die neue Methode benutzt werden, können aber nur in der Modellierungs- oder Prüffase und nicht in der wichtigsten Qualitätsplanungs- und Qualitätslenkungsphase angewendet werden.

### 4.5 Zusammenfassung


<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Verbesserung der numerischen und organisatorischen Qualität</th>
<th>Reduzierung der Modellnachbearbeitungszeiten</th>
<th>Verwendung von QM-Methoden</th>
<th>IT-technische Unterstützung des Ansatzes vorhanden</th>
<th>Umfassende Betrachtung der CAD-Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meissner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mendgen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schenke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JanitzA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerkens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projekt iViP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projekt ANICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAD-Normen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingebaute Funktionen in CAD-Systemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenständige Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methodische Industrieansätze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

: keine Erfüllung; : geringe Erfüllung; : mittlere Erfüllung; : hohe Erfüllung; : volle Erfüllung

Tabelle 2 Bewertung der recherchierten Ansätze
5 Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen

5.1 Grobes Gesamtkonzept

Aus den Ergebnissen der Analyse der Grundlagen und des Standes der Technik wird in diesem Kapitel das Gesamtkonzept zum Qualitätsmanagement der CAD-Modelle für die Erfüllung der abgeleiteten Anforderungen hergeleitet. Dieses Konzept soll sich an die allgemeinen Bausteine des Qualitätsmanagements anlehnen. Die Konzeptbausteine werden detailliert in entsprechenden Kapiteln beschrieben.


Abbildung 32: Konzeptbausteine des Qualitätsmanagements der CAD-Modelle

In der Phase der Qualitätslenkung wird begleitend zu der Modellerstellung gewährleistet, dass die Anforderungen auch erfüllt werden. Auf der einen Seite sind das software-technische Maßnahmen, die den CAD-Konstrukteur sowohl während der Modellierung unterstützen als auch bei Bedarf korrigierend eingreifen. Wichtig ist, dass die in der ersten Phase zusammengestellten Anforderungen sowohl bei dem Konstrukteur als auch bei dem Modellkunden verständlich visualisiert und vermittelt werden. Auf der anderen Seite sind das organisatorische Maßnahmen, wie speziell organisierte Besprechungen und Meetings. Ein weiterer wichtiger Baustein sind die Visualisierungsmethoden, die Qualitätsinformationen bei dem Modelllieferanten darstellen. Alle erwähnten Schritte müssen so konzipiert werden, dass sie in einem IT-System (z. B. PDM-System) implementierbar sind.

Die Qualitätsprüfung kann sowohl vor der Modellfreigabe für die anschließende Nutzung als auch schon während der Modellierung durchgeführt werden. Die Prüfung findet je nach Anforderungsgruppe anhand harter Fakten (numerische, geometrische und sonstige formale Kriterien) oder subjektiver Empfindungen statt. Insbesondere für die Prüfung der subjektiven Anforderungen werden neue Konzepte aufgestellt, weil sie kaum mit einem Softwarewerkzeug geprüft werden können. Auch an dieser Stelle spielt eine wichtige Rolle, dass die gefundenen Qualitätsabweichungen verständlich visualisiert werden.

Die Methoden der kontinuierlichen Qualitätsverbesserung stellen sicher, dass die erreichten Effekte auch langfristig und wirtschaftlich gewährleistet werden. Dazu gehört zum Beispiel methodischer Aufbau von Qualitäts-Templates, die bestimmte Qualitäts situationen (Modellkunden und -ersteller, Anforderungspflicht heta usw.) für die Wiederverwendung in späteren Projekten bzw. Modellierungsvorgängen abbilden. Wichtig ist der Vergleich der Qualitätsvorgehensweisen mit anderen Abteilungen oder - noch besser - anderen Unternehmen, die als führend in ihrem Bereich gelten. Weiterhin müssen die erarbeiteten Ergebnisse und das Wissen dokumentiert werden, wofür weitere Konzepte notwendig sind. Eine weitere, bis jetzt noch nie auf die CAD-Modelle angewendete Methode ist das Qualitätsaudit, bei dem der Modellerzeugungsprozess von internen oder auch externen Auditoren auf die Fähigkeit, hochqualitative Modelle zu liefern, geprüft wird.

Die beschriebenen Aufgaben sollen im Konzept unter Berücksichtigung der verbreiteten Qualitätsmanagementmethoden bzw. von Teilen von ihnen gelöst werden. Diese Methoden wurden aufgabenneutral im Kapitel 2.4.2 behandelt und sie müssen für die Zielsetzung der Arbeit integriert werden, damit sie gemeinsam unter Erzielung der Synergieeffekte angewendet werden können. Wichtig zu beachten ist, dass diese Methoden oft zu groß und starr für die flexible Anwendung mit CAD-Modellen sind. Aus diesem Grund müssen sie in Einzelteile (Module) aufgeteilt werden, die später zu kombinieren sind.

Man kann die Gesamtmethodik auch als eine Art Methodenbaukasten für die Qualitätsverbesserung der CAD-Modelle bezeichnen. Ehrlenspiel [Ehrl03] definiert den Begriff Methodenbaukasten als „eine systematisch geordnete Sammlung von Methoden, die für bestimmte Arbeitsabschnitte eines Prozesses alternativer eingesetzt werden können und für
5 Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen


5.2 Konzept der Adaption der Qualitätsmanagementmethoden für die Nutzung mit CAD-Modellen

In diesem Unterkapitel wird ein Konzept der Adaption der oft sehr komplizierten Qualitätsmanagementmethoden für die Anwendung im Kontext der CAD-Modelle entwickelt. Die Qualitätsmanagementmethoden müssen nach diesem Konzept vorbereitet, modularisiert und vereinfacht werden können. Die konkrete Vereinfachung und Modularisierung erfolgt dann später in entsprechenden Konzeptteilen der Methode.

5.2.1 Konzept der Modularisierung der QM-Methoden

Es ist wichtig, die starren Strukturen der ausgewählten QM-Methoden in einzelne, kompakte Module herunterzubrechen (Abbildung 33), die abgegrenzt und leicht handhabbar sind. Hierdurch wird es möglich, die einzelnen Module je nach dem Einsatzzweck zu verwenden [Lesm01]. In dieser Arbeit werden die Methoden u.a. in Anlehnung an Arbeiten von Lesmeister, Hoffmann und Zimmermann [Lesm01, Hofm97] modularisiert.

Abbildung 33: Modularisierung und Kombinierung der Methoden

An die Modularisierung der QM-Methoden werden folgende Anforderungen gestellt:

- Standardisierte Struktur der QM-Module
- Klar definierte Grenzen zwischen einzelnen Modulen
- Eingangs- und Ausgangsgrößen
- Klar definierte Modul-Aufgaben
- Definierte Schnittstellen für die Verknüpfung untereinander


Die Bestandteile eines Qualitätsmoduls sind in Tabelle 3 nochmals mit einigen Beispielen zusammengefasst:

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Beschreibung</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufgabe</td>
<td>Zweck des Moduls</td>
<td>Übersetzung der Kundenaussagen in die Anforderungen</td>
</tr>
<tr>
<td>Input</td>
<td>Liste der in dem Modul benötigten Daten</td>
<td>Kundenaussagen</td>
</tr>
<tr>
<td>Output</td>
<td>Liste der in dem Modul erzeugten Daten</td>
<td>Kundenanforderungen</td>
</tr>
<tr>
<td>Unterstützungs-</td>
<td>Werkzeuge, die die Ausführung der Modulaufgabe</td>
<td>Matrizen, Listen</td>
</tr>
<tr>
<td>werkzeug</td>
<td>unterstützen</td>
<td></td>
</tr>
<tr>
<td>Beschreibung</td>
<td>Erläuterung der Modulanwendung</td>
<td>…</td>
</tr>
<tr>
<td>Identifizierung</td>
<td>Kennzeichen zur eindeutigen Identifizierung des</td>
<td>Modul A</td>
</tr>
<tr>
<td></td>
<td>Moduls in einem Qualitätsworkflow.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3  Bestandteile eines Qualitätsmoduls

Die einzelnen Module werden in den entsprechenden Kapiteln abgeleitet, je nach dem Zeitpunkt des Einsatzes in der Gesamtmethodik.

### 5.2.2 Unterstützungswerkzeuge bzw. -methoden für die Qualitätsmodule

Auf die unterstützenden Werkzeuge, die der Realisierung eines Qualitätsmoduls dienen, wird auf dieser Stelle tiefer eingegangen. Wichtig ist die transparente, einheitliche und visuelle
Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen

Die meisten Qualitätstechniken wurden im Kapitel 2.4.2 beschrieben. Weitere Techniken für die Unterstützung der Qualitätsmodule sind (s. u.a. [Lesm01, Hoff94, KaBr03, Malm02]):

<table>
<thead>
<tr>
<th>Technik / Methode</th>
<th>Darstellung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liste</td>
<td></td>
<td>Auflistung und Gliederung der Elemente gleicher Kategorie)</td>
</tr>
<tr>
<td>Baumdiagramm</td>
<td></td>
<td>Gliederung und hierarchische Darstellung der Elemente.</td>
</tr>
<tr>
<td>Matrix / Matrizen</td>
<td></td>
<td>Vergleich unterschiedlicher Listen zueinander.</td>
</tr>
<tr>
<td>Paarweiser Vergleich</td>
<td></td>
<td>Vergleich gleicher Arten von Listen miteinander.</td>
</tr>
<tr>
<td>Dreiecksmatrix</td>
<td></td>
<td>Korrelation gleicher Listen untereinander (z. B. das Dach des QFD).</td>
</tr>
</tbody>
</table>

Tabelle 4 Elementare Hilfswerkzeuge der Qualitätsmodule
5.3 CAD-Modellqualitätsplanung

An dieser Stelle werden die ausgewählten Methoden für die Phase der Qualitätsplanung modularisiert (wie in Kapitel 5.2.1 beschrieben) und für die Nutzung mit CAD-Modellen angepasst. Wichtig ist dabei zu erwähnen, dass bei der Modulableitung nicht nur Elemente der ursprünglichen QM-Methode, sondern auch weitere notwendige Bausteine implementiert werden.

Die Module werden durchgängig, unabhängig von der „Mutter-Methode“, mit Buchstaben gekennzeichnet. Die Methoden sollen in der Reihenfolge des Einsatzes in der Produktentstehung modularisiert werden (Abbildung 35). Um den Rahmen der Arbeit nicht unnötig zu sprengen, werden nach einer Analyse nur die Module erstellt, die später für die Gesamtmethode von Nutzen sind\(^{23}\). Folgende Module werden für die Phase der Qualitätsplanung der CAD-Modelle abgeleitet:

<table>
<thead>
<tr>
<th>Qualitätsplanung</th>
<th>CAD-Modellidentifizierung -gewichtung und - notierung</th>
<th>Anforderungs- akquisition</th>
<th>Anforderungsgewichtung</th>
<th>CAD-Modell-Pflichtenheft (Übersetzung Anforderungser-Merkmale)</th>
<th>Wechselwirkungen und Verträglichkeiten der Anforderungen</th>
</tr>
</thead>
</table>

Abbildung 35: Qualitätsmodule der Phase der CAD-Qualitätsplanung

Der Modularisierung sollen noch einige notwendigen Informationen und Dokumente vorangestellt werden:

In der Phase der Qualitätsplanung werden in unterschiedlichen Qualitätssmodulen und operativer Software unterschiedliche Informationen erhoben, dokumentiert und strukturiert aufbereitet. Einige dieser Informationen wurden schon in den ersten Kapiteln ausführlich erläutert, sie werden an dieser Stelle nur kurz erwähnt. Die wichtigsten Objekte bzw. Elemente, zu denen Informationen zu denen vor dem Start der Modellierung bekannt sein müssen, sind: CAD-Modell selbst, CAD-Modellkunden, Gewichtungen der Kunden und der Anforderungen, CAD-Modellzeuger, CAD-Modell-Anforderungen, CAD-Modell-

\(^{23}\) Vernachlässigt werden Funktionen bzw. Aufgaben, die nur für physikalische Produkte anwendbar sind (z. B. Service- oder Verkaufs-Gewichtung im QFD-Haus).
Merkmale, CAD-Modell-Prüfkriterium, CAD-Modell-Lastenheft und CAD-Modell-
Pflichtenheft.

Neu werden hierbei die Elemente CAD-Modell-Lastenheft und CAD-Modell-Pflichtenheft
sowie CAD-Modell-Prüfkriterium eingeführt. Ein Lastenheft fasst u.a. CAD-Modell-
Anforderungen zusammen (Perspektive des Modellkunden), wohingegen ein Pflichtenheft die
to implementierenden Modellmerkmale enthält (Perspektive des Modellerzeugers). Weiterhin
ist der Unterschied zwischen einem CAD-Modell-Merkmal und einem CAD-Modell-
Prüfkriterium wichtig. Viele Modellmerkmale können weder von einem Prüfprogramm noch
von einer Person direkt überprüft werden. Deshalb müssen Prüfkriterien abgeleitet werden,
die entweder formalisiert für ein Programm oder auch für eine Person geeignet sind.

In dem Kapitel 6.2 wird das Informationsmodell für die Abspeicherung der Informationen zu
diesen Begriffen entwickelt. In diesem Datenmodell werden die Bedeutung und vor allem
Zwischenbeziehungen abgebildet und für die IT-technische Verarbeitung vorbereitet.

5.3.1 Modul A: CAD-Modellkundenidentifizierung, -gewichtung und -notation

Die Phase der Modellkundenidentifizierung wird in meisten Fällen direkt nach dem Start
eines Entwicklungsprojektes erfolgen und stellt eine typische Startphase bei der Methode
QFD dar. Bei CAD-Modellen ist es im Vergleich zu den physischen Produkten oder Services
vorteilhaft, dass sich die meisten Modellkunden innerhalb eines Unternehmens befinden und
oft schon bekannt sind. Der grundlegende Unterschied zu den herkömmlichen Produkten liegt
aber in der Tatsache, dass bei CAD-Modellen nicht die potentiellen Kunden gesucht werden,
die später für die Produktnutzung akquiriert werden müssen, sondern die Modellnutzer, die
auch ohne das Qualitätsmanagement oder ohne diese Methodik auf die CAD-Modell-Nutzung
angewiesen sind.

Insgesamt können grob folgende Arten der Modellkunden-Ermittlung angewendet werden:

- **Top-Down-Projektmanagement-Ansatz:** Bei dem Top-Down-Ansatz werden die
  CAD-Modellkunden von der Projektleitung bzw. dem Projektmanager identifiziert
  oder sogar benannt. Die Grundidee ist, dass die Modellkunden ihre Tätigkeiten in den
  meisten Fällen erst nach einer Anweisung seitens des Projektleiters aufnehmen.
  Deshalb hat er auch den besten Überblick, wer zu welchem Zeitpunkt die CAD-
  Modelle in einem Projekt nutzt. Bei größeren Projekten wird diese Aufgabe an
  Gruppenleiter oder Teilprojektleiter delegiert. Damit diese Aufgabenteilung nicht zu
neuen Fehlern führt, müssen diese Personen gemeinsam die Liste aufstellen. Ansonsten besteht außerdem die Gefahr, dass einige Leiter einige Modellnutzer nicht als solche sehen.


- **Modelllieferantenorientierter Ansatz:** Oft können einige Modellkunden nicht erkannt werden, weil sie nicht direkt in einem Projektplan als ausführende Instanz erscheinen oder nicht direkt versionsändernd (also nur lesende) Vorgänge im PDM-System ausführen. Ein Beispiel dafür ist der CAD-Modellkunde Produktdokumentation, der oft erst nach dem Abschluss der Produktentwicklung ohne Einbeziehung in das PDM-System die CAD-Modelle für die Visualisierung nutzt. In diesem Fall muss durch entsprechende Kommunikationsmaßnahmen (Mailing, E-Whiteboards) darauf aufmerksam gemacht werden, dass ein neues Projekt mit dem entsprechenden Modelllieferanten in Planung ist. Die angesprochenen Modellkunden können sich dann über entsprechende elektronische Mechanismen melden und an der Akquisition der Anforderungen (Modul B) direkt teilnehmen.

Eine sehr wichtige Fragestellung betrifft die passende Form für die Notation der Zusammenhänge zwischen CAD-Modellkunden und CAD-Modell-Lieferanten. Als besonders passend erscheint das Anwendungsfalldiagramm (meistens Use Case-Diagramm genannt) von UML [Erle04], das durch eine Anpassung an die CAD-Modelle für die Methode angewendet werden kann. Obwohl die Aussagekraft dieser Diagramme beschränkt ist, eignen sie sich gut, weil sie einen groben Überblick über die Beziehungen im Projekt geben. Das wichtigste Element dieses Diagramms ist der Akteur, der eine Rolle im Prozess darstellt. Besonders vorteilhaft für die Thematik dieser Arbeit ist, dass ein Akteur nicht unbedingt eine Person sein muss. Abbildung 36 zeigt die allgemeine Notation eines Use Case und die notwendigen Anpassungen für die CAD-Modelle, weil es bei CAD-Modellen notwendig ist, nicht nur die

Abbildung 36: Darstellung von Use Case – Elementen in der Methodik

Abbildung 37: Beispiel eines Use Case – Diagramms für ein Projekt

Im Beispiel werden die Modelle von zwei CAD-Konstrukteuren als Modelllieferanten von weiteren drei Ingenieuren für ihre Aufgaben weiterverwendet. Die Weiterverwendung ist sehr kurz in dem entsprechenden Anwendungsfall (ovaler Kreis) beschrieben.

5.3.2 Modul B: Anforderungsakquisition


Bei der Akquisition der Anforderungen an die CAD-Modelle müssen die Besonderheiten der Nutzer berücksichtigt werden. Im Allgemeinen stehen für die Ermittlung der Anforderungen an ein zukünftiges CAD-Modell sehr unterschiedliche Methoden zur Verfügung. Im Unterschied zu den Kunden der physischen Produkte kommen fast alle CAD-Modellkunden aus dem technischen Umfeld, so dass auch die strukturierten elektronischen Werkzeuge als passend und zeitsparend erscheinen.

Der Fragebogen in elektronischer Form zählt zu den häufigsten verwendeten Ermittlungstechniken [Rupp02]. Wichtiger Vorteil eines elektronischen Fragebogens ist die Möglichkeit, die Informationen weiterzuverarbeiten und vorhandene Informationen zur Auswahl anzubieten. Vor allem bei den Multiple-Choice-Fragen kann man die Antworten sehr schnell elektronisch auswerten. Darüber hinaus stellt er eine Zeit und Kosten sparende Möglichkeit dar, die Anforderungen zu erfassen. In den meisten Fällen werden heute elektronische Fragebögen im Internet oder im firmeninternen Intranet verwendet. Allerdings scheint dies für die Anwendung mit CAD-Dateien nicht sinnvoll, weil sowohl CAD-Konstrukteure als auch die CAD-Modellkunden meist nicht direkt mit dem Internet, sondern mit einem Produktdatenmanagement-System arbeiten. In einem PDM-System besteht auch die Möglichkeit, die erfassten Anforderungen mit weiteren (Meta-)Daten, wie Anwender, Produkt, CAD-Model, Projekt etc. strukturiert abzulegen (Abbildung 38) und vor allem direkt
mit dem Informationselement des Bauteiles oder der Baugruppe (in der Abbildung Produktstamm bzw. -Item) zu verknüpfen.

Abbildung 38: Ablauf der Anforderungserfassung mit dem elektronischen Fragebogen

Wichtig ist der Zeitpunkt der Befragung. Die Modellweiterverwendung beginnt in den meisten Fällen entweder direkt nach der CAD-Modellgenerierung oder kurz vor der Modellfertigstellung, was zu spät für eine Einflussnahme auf die Modellerzeugung ist. Deshalb muss die Befragung als einer der ersten Bausteine in der Planungsphase platziert werden, also direkt nach dem Projektstart. Die Anforderungserfassung muss komplett vor dem Beginn der Modellierungsphase abgeschlossen werden. Ausgelöst wird die elektronische Befragung entweder durch den Projektleiter oder den CAD-Modellerzeuger (Abbildung 38). Nach der Workflowauslösung wird von dem PDM-System im ersten Schritt der Fragebogen aus Vorlagen zusammengesetzt und dann wird der entsprechende Link (elektronische
Einladung) zu dem PDM-Fragebogen an den Modellkunden gesendet. Das Fragebogendatenelement wird direkt mit dem Produkt-Item\textsuperscript{24} im PDM-System verknüpft, so dass die Befragenden sofort in die Produktinformationen\textsuperscript{25} Einblick nehmen können. Eine weitere passende Einsatzmöglichkeit der Befragung wäre die Abschlussbefragung nach Projektende, bei der zusätzliche Informationen für die Verwendung in zukünftigen Projekten und vor allem Qualitätsvorlagen erfasst werden können. Nach der Fertigstellung der Befragung werden die Ergebnisse freigegeben.


Die Grundidee der Methode ist die Tatsache, dass mehr als 90 Prozent aller Informationen nur sechs unterschiedlichen Informationsarten zugeordnet werden können: Anleitung, Prozess, Struktur, Begriff, Prinzip, Fakt. IMAP führt im Unterschied zur normalen Texterstellung neue Strukturelemente ein, so dass die Texte modular gestaltet werden:

- **Block**: eine in sich abgeschlossene Art von Informationen (z. B. Klassifizierung einer bestimmten Anforderung)
- **Map**: ein Thema, bestehend aus mehreren Blöcken (z. B. Teil „Anforderungsdefinition“)

Der Fragebogen darf sich nicht nur auf die Formulierung der Anforderung konzentrieren sondern muss den Modellkunden durch das Thema und einzelne Blöcke und Maps führen.

\textsuperscript{24} Unter einem Item (die deutschen Übersetzungen werden sehr selten benutzt) wird in PDM-Systemen ein Datenelement verstanden, das unterschiedliche produktbezogene Informationen umfasst (Produktstruktur, Attribute, Dokumente, Stückliste etc.)

\textsuperscript{25} In diesem Entwurfsstadium des Produktes wird ein Item nur grobe Informationen enthalten. Möglich ist auch eine Verknüpfung zu einem anderen älteren Item (bei Variantenkonstruktionen).

\textsuperscript{26} VDMA: Verein Deutscher Maschinen- und Anlagenbauer
Der Vorteil eines elektronischen Fragebogens in einem PDM-System ist, dass man die Inhalte dynamisch gestalten kann, die entsprechend dem Projekt und den Antworten angepasst werden. Obwohl diese Befragung in dem Modul Anforderungskquisition und -gewichtung stattfindet, sollte der CAD-Modellkunde nach weiteren Aspekten, wie z. B. Lösungsweg zu der Anforderungserfüllung etc., gefragt werden. Die grundlegenden Fragebogen-Teile sind:

- **Einführung**: Dieser Teil enthält die Beschreibung des Projektes und der allgemeinen Zusammensetzung der Modellkunden und CAD-Modellzeuger im Projekt.

- **Auswahl des Modellzeugers**: In diesem Teil wählt der CAD-Modellkunde den entsprechenden CAD-Modellzeuger aus.

- **Anpassung vorhandener Vorlagen** (siehe nächster Absatz): Die vorhandenen Anforderungsvorlagen werden an dieser Stelle an die Gegebenheiten des aktuellen Projektes angepasst.

- **Formulierung der neuen Anforderungen**: Die in den Anforderungsvorlagen nicht vorhandenen Anforderungen müssen am Ende neu eingegeben werden.


Weitere Werkzeuge für die Anforderungserfassung sind Interviews und Workshops. Der Vorteil eines Interviews besteht darin, dass bei jedem Modellkunden unterschiedlich stark auf die einzelnen Qualitätsanforderungen eingegangen werden kann, so dass der Gesprächsverlauf individuell angepasst werden kann. Nachteilig ist, dass Interviews für beide Seiten sehr zeitaufwendig sind. Ein weiterer Nachteil ist, dass die Ergebnisse sehr stark vom
Interviewer abhängen, in diesem Fall einem Vertreter der CAx-Abteilung oder der Konstruktionsabteilung. Auf Workshops wurde kurz in Kapitel 5.2.2 eingegangen. Sowohl bei Interviews als auch bei Workshop gilt, dass sie nur dann verwendet werden sollten, wenn die Nutzung eines elektronischen Werkzeugs, wie elektronischer Fragebogen, nicht sinnvoll ist. Dies wird in den meisten Fällen bei der Initiierung der Methode oder bei der Modellierung neuer Produkten der Fall sein. Dann können sie sehr effektiv für die Aufstellung einer neuen Anforderungsvorlage benutzt werden.


Nachdem Kundenaussagen klar sind, können sie durch Diskussionen in Workshops im ersten Schritt in Teil-Themen aufgeteilt werden. Danach folgt die Darstellung der Anforderungen als Ableitung der Teil-Themen. Die Darstellung kann außerdem sehr gut für die spätere Wiederverwendung der Qualitätsinformation benutzt werden.

---

27 Das Ishikawa-Diagramm (Ursache-Wirkungs-Diagramm) wird im Alltag oft „Fishbone-Diagramm“ oder auch „Fischgrätendiagramm“ benannt.
5.3.3 Modul C: Anforderungsgewichtung


Vorhandene Verfahren, wie z. B. das sehr verbreitete Konstante-Summen-Verfahren\(^{28}\) können auf die CAD-Modelle nicht angewendet werden, weil sie sehr stark die subjektive und nicht die objektive Betrachtung des Problems in den Mittelpunkt stellen, was für die meisten physischen Produkte (besonders Konsumprodukte) spezifisch ist. Im Falle der Qualität der CAD-Modelle stehen aber bestimmte objektive quantitative Faktoren zur Verfügung, von denen die Nachbearbeitungszeit die größte Rolle spielt. Darüber hinaus sind die meisten Gewichtungsverfahren für sehr komplizierte Verfahren ausgelegt mit einer sehr komplizierten Gewichtung als Ergebnis. Für die CAD-Modellierung reichen aber in den meisten Fällen höchstens 5, oft sogar 3, Stufen der Gewichtung.


\(^{28}\) Bei dem Konstante-Summen-Verfahren wird eine konstante Menge von Punkten zur Gewichtung der Kundenanforderungen genutzt. Die Kunden müssen hierbei eine vorgegebene Menge an Punkten vollständig auf die Anforderungen im Bezug auf die empfundene Wichtigkeit der Anforderungen verteilen.
Die folgenden Faktoren und Informationen (die meisten werden im vorherigen Modul erfasst oder aus der Erfahrung beigetragen) sind bei der Einstufung der Anforderungen von der Wichtigkeit und müssen deshalb berücksichtigt werden:


- **Anforderungswichtigkeit seitens Modellkunden**: Man darf die Bewertung seitens des Modellkunden nicht direkt als Anforderungsgewichtung übernehmen, weil viele Personen dies nur subjektiv bewerten werden. Auch an dieser Stelle werden direkt nur die Anforderungen eingestuft (Gruppe A), die vom Modellkunden als eine Pflichtanforderung bezeichnet wurden. Bei anderen erfolgt die Einstufung nach der Nachbearbeitungszeit. Dadurch wird vermieden, dass sehr wichtige Anforderungen mit geringer Nachbearbeitungszeit heruntergestuft werden. Dies unterstreicht, wie wichtig es ist, dass Modellkunden wenigstens diese Einteilung nur nach strengen Faktoren ausführen (siehe Modul B).

- **Nachbearbeitungszeit bei der Nichterfüllung der Anforderung**: Für alle restlichen Anforderungsgruppen agiert die Nachbearbeitungszeit als Merkmal für die Einstufung. Dabei ist aber auch wichtig, wie groß die Anzahl der Nachbearbeitungsvorgänge pro eine Zeiteinheit (z. B. Projektdauer) ist, also wie oft das CAD-Modell wegen des Problems nachbearbeitet werden muss. Die Gesamtnachbearbeitungszeit bei der Nichterfüllung der Anforderung wird also durch die Multiplikation der Anzahl der Nachbearbeitungsvorgänge und die Dauer eines Nachbearbeitungsvorgangs errechnet. Dies bedingt, dass die oft bei der oberflächlichen Betrachtung sehr einfach erscheinenden Modellanforderungen (z. B. bestimmte Modellierungsaufgaben bei Bohrungen) durch die oft enorme Anzahl der Nachbearbeitungen (einmal pro Bohrung im Beispiel) in der Realität sehr wichtig sind. Die Anforderungen mit der größten Nachbearbeitungszeit werden in die Gruppe A eingestuft. Die Zeitgrenzen für die Einstufung in weitere Gruppen werden je nach dem Projekt oder Unternehmen festgelegt.

- **Einstufung nach zusätzlichen Randbedingungen**: Weitere von den Modellkunden nicht direkt abhängige Anforderungen können die Einstufung beeinflussen. Ein Beispiel sind die rechtlichen Anforderungen (z. B. an die Modelldatenarchivierung), die auf jeden Fall erfüllt werden müssen und somit der Pflichtgruppe A zugehören.

Abbildung 40 zeigt den Ablauf der Gewichtung mit dem Endergebnis in der Form eines Pareto-Diagramms.
5.3.4 Modul D: CAD-Modell-Pflichtenheft (Übersetzung der Anforderungen in Modellmerkmale)


An dieser Stelle muss nochmals angemerkt werden, dass es einen wichtigen Unterschied zwischen den Modellanforderungen, Modellmerkmalen und Prüfkriterien gibt. Die Modellanforderungen werden durch die Modellmerkmale erfüllt, die wieder durch das Abprüfen der Prüfkriterien überprüft werden können (wichtig für die Phase der Qualitätslenkung und der Qualitätskontrolle).

Ein weiteres Ziel soll es sein, einen umfangreichen Katalog mit den möglichen Modellmerkmalen zu definieren, so dass das Projektteam den Anforderungen vordefinierte Merkmale zuweisen kann. Dieser Katalog sollte sich in der Struktur und Inhalt an das in dem Unternehmen verwendete CAD-Modell-Prüfprogramm anlehnen, so dass den meisten Modellmerkmalen in späteren Modulen der Qualitätsprüfung entsprechende Prüfkriterien zugewiesen werden können.


Abbildung 41: Erstellung des Pflichtenheftes im Bottom-Up-Ansatz

29 An dieser Stelle wird als „Top“ das Ziel, also das CAD-Modell (CAD-Modellmerkmale) und als „Down“ der Ausgangszustand, also die CAD-Modellanforderungen verstanden.

Abbildung 42: Erstellung des Pflichtenheftes nach dem Top-Down-Ansatz

5.3.5 **Modul E: Wechselwirkungen und Verträglichkeiten der Anforderungen**

<table>
<thead>
<tr>
<th>Input/Output</th>
<th>Werkzeuge:</th>
<th>Matrix, Dreieckmatrix</th>
</tr>
</thead>
</table>

Ein häufiges Problem kann sein, dass die Anforderungen der unterschiedlichen Modellkunden sich oft widersprechen; sie sind also in diesem Fall unverträglich. Die Analyse zeigt, dass die Verträglichkeit der Anforderungen ausschließlich auf die Verträglichkeit und Korrelation der entsprechenden Modellmerkmale bzw. Merkmalzielwerte zurückzuführen ist. Grundsätzlich sind bei CAD-Modell-Anforderungen wie bei normalen Produkten (ein Schritt der Methode Quality Function Deployment) folgende Beziehungen möglich (siehe auch [Ehrl03, Eile99]):

- **Zielunabhängigkeit (Neutralität):** Die CAD-Modell-Anforderungen können mit den Merkmalen und Merkmalzielwerten des CAD-Modells realisiert werden, die voneinander unabhängig sind. Die Änderung der Merkmale beeinflusst nur die Erfüllung der entsprechenden CAD-Modell-Anforderung und hat keinen Einfluss auf die gleichzeitige Erfüllung einer anderen Anforderung.

- **Zielunterstützung (Zielkomplementarität):** Die CAD-Modell-Anforderungen werden durch die CAD-Modell-Merkmale und Merkmalzielwerte realisiert, die u.a. zu ähnlichen Zielen führen. Ein Beispiel ist: Anforderung „verständliche Struktur“ und „verständliche Benennung der Elemente“.

- **Zielkonflikt:** Bei dieser Beziehung widersprechen sich die Anforderungen, weil sie durch die Merkmale und Merkmalzielwerte realisiert werden, die sich stark beeinflussen. Die zunehmende Erfüllung einer Anforderung führt zur wachsenden Nichterfüllung einer anderen Anforderung. Ein Beispiel ist die Anforderung „keine Details unter 3mm“ gegen die Anforderung „100%ige Genauigkeit für die Fertigung“.

- **Unverträglichkeit (Zielantinomie):** Dies ist eine entsprechende Ausprägung des Konfliktes, bei dem die Anforderungen sich gegenseitig ausschließen, die Modellmerkmale sind also unverträglich bzw. inkompatibel. Ein Beispiel ist: Anforderung „Drahtmodellierung“ und Anforderung „Volumenmodellierung“, die nicht vereinbar sind.

Deshalb besteht dieses Modul aus 2 Teilen: Teil der Analyse und der Notation der Wechselwirkungen und Verträglichkeiten und - was in diesem Konzept viel wichtiger ist - ein Teil der Merkmalkonfliktbewältigung.

**Analyse und Notation der Wechselbeziehungen:** Im QFD-Ansatz wird die Verträglichkeit im Dach des Quality-Hauses in einer Dreiecksmatrix als „Ausgewogenheit der Lösungen“ benannt und dargestellt, wobei die Beziehung der Produktmerkmale mit (-) für eine negative Wechselwirkung und mit (+) für eine positive Wechselwirkung bezeichnet wird. Vorteile einer solcher Vorgehensweise [Eile99] liegen in dem systematischen Vorgehen, weil theoretisch alle Wechselbeziehungen untersucht werden. Ein Nachteil der Methode bei der Nutzung mit sehr komplexen physischen Produkten ist der sehr hohe Aufwand. Im Falle der CAD-Modellierung ist der Aufwand nicht sehr hoch, weil nicht alle, sondern nur weiterverwendungsrelevante Merkmale erfasst werden. Für die CAD-Modellmerkmale muss die Matrix angepasst werden, weil gleichzeitig zu den Wechselwirkungen der Merkmale daraus die Wechselwirkungen der Anforderungen abgeleitet werden. Für die Beziehungen sind auch andere Attribute notwendig:

- (0) oder keine Angabe: unabhängige Merkmale
- (+): sich unterstützende Merkmale
- (-): konfrontierende Merkmale
- (x): unverträgliche Merkmale

Entsprechend der Wechselwirkungen der Merkmale werden danach die Wechselwirkungen der Modellanforderungen ausgedrückt. Im Beispiel in Abbildung 43 sind die Anforderungen 2 und 3 unverträglich und die Anforderungen 1 und 2 behindern sich durch ihre konfrontierenden Merkmale. Anforderungen 1 und 5 zum Beispiel werden durch ihre Merkmale unterstützt.
Abbildung 43: Beispiel einer Wechselbeziehungsmatrix

**Merkmalskonfliktbewältigung**

Nachdem die Wechselwirkungen und Verträglichkeiten dargestellt sind, muss ein Lösungsweg ausgearbeitet werden. Grundsätzlich sind für die CAD-Modellierung folgende Lösungswege möglich:

**Anforderungspriorisierung:** Erstellung eines CAD-Modells mit einer Lösung: Bei diesem Lösungsweg werden in dem CAD-Modell bei unverträglichen Anforderungspaaren nur Merkmale der höher gewichteten Anforderungen implementiert. Eine einzige Ausnahme bilden die Lösungen, bei dem für geringer gewichtete Anforderungen alternative Merkmale abgeleitet werden können, die keine negativen Wechselwirkungen mehr aufweisen. Für den Modelllieferanten ist dies die zeitsparendste Lösung. Allerdings kann die Nichterfüllung bestimmter Anforderungen zeitraubende Nachbearbeitungen bei Modellkunden nach sich ziehen.

**Konfliktbeseitigung**

- **Erstellung eines CAD-Modells mit mehreren Lösungen:** Bei diesem Lösungsweg werden die Möglichkeiten der modernen parametrischen 3D-CAD-Systeme ausgenutzt, die unterschiedliche Wege für die Variantendefinition anbieten. Dabei können unterschiedliche, auch unverträgliche Merkmale in das CAD-Modell implementiert werden, indem man die unverträglichen Merkmale bzw. CAD-Formelemente und Features nacheinander unterdrückt. Der CAD-Modellkunde hat dann die Möglichkeit, durch das Aktivieren notwendiger Elemente ein auf ihn abgestimmtes CAD-Modell zu erhalten. Ein Beispiel ist ein CAD-Modell, das sowohl von einem NC-Fertigungsingenieur als auch von einem FEM-Berechnungsingenieur
benutzt wird. Die Fertigungsfeatures können methodisch so modelliert werden, dass sie von dem Berechnungsingenieur jederzeit ausgeschaltet werden können.

- **Erstellung mehrerer CAD-Modelle:** Falls es nicht möglich ist, mehrere Lösungen in ein CAD-Modell zu implementieren und mehrere unverträgliche sehr wichtige Anforderungen vorliegen, können von dem Modelllieferanten mehrere CAD-Modelle erzeugt werden, die unterschiedliche Merkmale aufweisen. Bei diesem Weg muss individuell abgewogen werden, ob der Erstellungsaufwand mehrerer Modelle gerechtfertigt ist, indem man den Zeitgewinn bei dem Modellkunden vergleicht.


Abbildung 44: Beispiel der assoziativen Erzeugung der alternativen Modelle

5 Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen

partiellen Modelle der Modellkunden und dürfen auch nur von dem Modellkunden verwendet werden.


5.4 CAD-Modellqualitätslenkung

Die Phase der Modellqualitätslenkung betrachtet die Qualitätsmaßnahmen während der CAD-Modellerstellung. Die Phase wird auch oft als Qualitätssteuerung bezeichnet und baut prinzipiell auf den Ergebnissen der Qualitätsplanung auf. Die wichtigsten Aufgaben der Qualitätslenkung der CAD-Modelle ist auf der einen Seite die Unterstützung des CAD-Modell-Lieferanten während der Modellierung und auf der anderen Seite die laufende Gewährleistung der Qualität während der Modellierung. Im Mittelpunkt der CAD-Modellqualitätslenkung steht nicht wie bei dem Konzept der CAD-Qualitätsprüfung die CAD-Modell-Endkontrolle, sondern die Prozessüberwachung der Modellierung.

Abbildung 45: Bausteine der Phase CAD-Modellqualitätslenkung

Abbildung 45 zeigt die für die Phase der Qualitätslenkung der CAD-Modelle entwickelten Methodikbausteine. Vor dem Start der Modellierung müssen CAD-Modell-spezifische Prüfkriterien entwickelt werden und zu Prüfprofilen zusammengefasst werden. Für die kontinuierliche präventive Prüfung des Modellierungsprozesses dient das Qualitätsmodul CAD-Poka-Yoke. Die Methode des Moduls CAD-Modell-Design-Review greift hingegen nicht kontinuierlich, sondern nur zu bestimmten Meilensteinen ein. Weiterhin spielt die Visualisierung der Qualitätsinformation während der Modellierung eine wichtige Rolle für die
Informationsvermittlung. Da die Visualisierung übergreifend eingesetzt wird, ist dies kein Qualitätsmodul, sondern eine durchgehende Teilmethode.

5.4.1 **Modul F: Ableitung der Prüfmerkmale**

<table>
<thead>
<tr>
<th>Werkzeuge:</th>
<th>Merkmalkatalog</th>
</tr>
</thead>
</table>

Nachdem die geforderten Modellmerkmale in dem Modellpflichtenheft zusammengefasst sind, müssen sie in Modellprüfkriterien übersetzt werden (ein Schritt der Methode Quality Function Deployment). Dieses Modul bedient die anderen Module der Phasen der Qualitätslenkung und der Qualitätsprüfung. Es ist notwendig, die Modellmerkmale in die Prüfkriterien zu übersetzen, weil die Merkmale – obwohl sie schon in der technischen Sprache formuliert sind – oft nicht direkt geprüft werden können. Die Prüfkriterien sind meistens sehr systemabhängig, weil meistens versucht werden muss, so viele Kriterien wie möglich automatisch prüfen zu lassen. Dafür müssen die Prüfkriterien mit dem Prüfsystem (Modellchecksoftware) abgestimmt sein. Im optimalen Fall stimmen sie mit den vorhandenen Kriterien der Modellchecksoftware überein. Für die Klärung der Begrifflichkeit zeigt Abbildung 46 eine Übersetzungskette von der Anforderung zu dem Merkmal.

Abb Abbildung 46: Beispiel der Ableitung eines Prüfkriteriums

In einigen Sonderfällen ist es denkbar, dass einige Modellmerkmale mit mehreren Prüfkriterien kontrolliert werden müssen. Obwohl die meisten Merkmale in den Prüfkriterien übersetzt werden sollten, ist es nicht immer möglich. Folgende Klassifikation der Prüfbarkeit der Modellmerkmale lässt sich für diese Arbeit ableiten:

- **Automatisch prüfbare Modellmerkmale**: viele Modellmerkmale können direkt geprüft werden (meist dem Modellmerkmal sehr ähnlich formuliertes Prüfkriterium). In diesem Fall müssen nur aus dem Prüfkriterienkatalog des Prüfsystems


- **Manuell prüfbare Merkmale:** Einige (meistens semantische) Modellmerkmale werden nicht in die automatischen Prüfkriterien übersetzt werden können. In diesem Fall muss dieses Merkmal für die manuelle Überprüfung vorbereitet werden. Es kann zum Beispiel eine Checkliste etc. für den Modellersteller oder auch für das Review-Team abgeleitet werden. Ein Beispiel für ein solches Merkmal ist das Modellmerkmal „Verständliche Benennung der Elemente“. Ein Schwachpunkt bei diesen Prüfkriterien ist, dass durch das manuelle Prüfen oft subjektive Einflüsse des Prüfers starke Auswirkung auf das Ergebnis haben können. Deshalb müssen sie am besten in Form einer Checkliste mit klaren und transparenten Prüfhinweisen und -kriterien ausgeführt werden, die unterschrieben werden muss. Auf die Checklisten wird ausführlicher im Kapitel zur Modellprüfung eingegangen.

Es sollte schon bei der Anforderungserfassung und der Modellmerkmalsformulierung darauf geachtet werden, dass die meisten Prüfkriterien direkt oder nach einer Übersetzung automatisch prüfbar sind. Bei den manuell prüfbaren Kriterien bedeutet die Prüfung eine Unterbrechung des Modellierungsvergangens, wohingegen die automatisch prüfbaren Kriterien in dem Hintergrund (siehe Modul CAD-Poka-Yoke) überprüft werden können.

In den meisten Fällen ist ein Grundprüfprofil notwendig, das später ohne Anpassung in jedes Prüfprofil als Grundlage übernommen werden kann (siehe Abbildung 47). Die in dieser Arbeit durchgeführte Analyse unterschiedlicher Prüfverfahren unterschiedlicher Firmen hat gezeigt, dass in meisten Fällen nur geringfügige projekt- bzw. kundenabhängige Änderungen in einem konkreten Fall notwendig sind. In dem Bild ist auch zu erkennen, dass einige Prüfkriterien keinem direkten Merkmal zugeordnet werden, weil sie nicht die Modell Eigenschaften prüfen. So kann ein Prüfkriterium die verwendete CAD-Systemversion oder auch die Betriebssystemversion prüfen, was nicht direkt ein CAD-Modell-Merkmal ist\(^{30}\).

Abbildung 47: Zusammensetzung eines Prüfprofils in Form eines UML-Klassen-Diagramms


---

\(^{30}\) Solche Prüfungen werden sehr oft von externen Firmenkunden gefordert, damit der Datenaustausch gewährleistet werden kann.
5 Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen

5.4.2 Modul G: CAD-Modell-Design-Review


Abbildung 48 zeigt einige inhaltliche Anforderungen an ein CAD-Modell-Design-Review. Besonders wichtig dabei ist die Definition klarer Kriterien für jedes Quality Gate.

Abbildung 48: Inhaltliche Anforderungen an CAD-Modell-Design-Reviews

genannten Model Readiness Checks definieren, die vor dem Review stattfinden. Ein Readiness Check bewertet und misst die Review-Fähigkeit durch Prüfung benötigter formaler Vollständigkeit und inhaltlicher Qualität. Im Fall der CAD-Modelle kann ein CAD-Modell Readiness Check in Form eines Laufes des Prüftools oder auch durch Durcharbeiten einer Prüfcheckliste erfolgen.

Zu viele CAD-Modell-Quality-Gates wirken jedoch hinderlich für den Projektablauf. Bei ihrer Festlegung muss daher sorgfältig darauf geachtet werden, dass sie den Projektablauf nicht unnötig verzögern. Das Ergebnis eines CAD-Modell-Quality-Gates kann sein:

- **Freigabe bzw. Zwischenfreigabe:** Der Ist-Zustand (z. B. von Modellmerkmalen) stimmt mit den vorgegebenen Merkmalen des Pflichtenheftes überein. In diesem Fall darf das CAD-Modell sofort entweder weiterentwickelt werden oder vom Modellkunden benutzt werden.

- **Freigabe unter Vorbehalt:** Falls einige Kriterien nicht erfüllt wurden, darf das CAD-Modell unter Vorbehalt späterer Implementierung freigegeben werden. Die Voraussetzung ist, dass die nicht erfüllten Anforderungen nur geringe Wichtigkeit aufweisen. Die nachträgliche Implementierung muss von dem Modelllieferanten dokumentiert werden.

- **Ablehnung:** Bei der Nichterfüllung der Schlüsselkriterien muss das CAD-Modell von dem Lieferanten geändert werden. In diesem Fall muss später ein anderes CAD-Modell-Quality-Gate stattfinden, bei dem allerdings nicht alle Projektteilnehmer anwesend sein müssen.


So dürfen die Teilnehmer nicht alle Daten sehen und auf keinen Fall das CAD-Modell ändern. Weiterhin sind Vertretungs- und Eskalationsmechanismen notwendig, für den Fall, dass der Teilnehmer abwesend ist bzw. nicht rechtzeitig am Review teilnimmt. Diese Mechanismen greifen in diesen Fällen automatisch ein. Durch ein Rollenkonzept kann darüber hinaus erreicht werden, dass eine Person aus einem bestimmten Kreis von Personen am Review teilnehmen kann: ein Beispiel wäre Prüferrolle „FEM-Ingenieur“.

![Abbildung 50: CAD-Modell-DesignReview in Form einer elektronischen Mappe](image)

5.4.3 Modul H: Präventive Prozessüberwachung (CAD-Poka-Yoke)


Der Nutzen der CAD-Poka-Yoke übersteigt den Aufwand oft signifikant [Schw03], da bereits durch kleine Maßnahmen immense Vorteile, wie z. B. die Verringerung der Modellnachbearbeitungszeit, realisierbar sind, womit nicht nur die Qualität der CAD-Modelle gesteigert wird, sondern auch Kosten eingespart werden können.

In der Vorbereitungsphase müssen an erster Stelle Modellmerkmale bzw. Prüfkriterien ausgewählt werden, die für CAD-Poka-Yoke geeignet sind. Da CAD-Poka-Yoke weitgehend automatisch im Hintergrund der Modellierung ablaufen sollte, sind nur die **numerischen** oder **geometrischen** Kriterien bzw. Merkmale dafür geeignet. **Semantische** Anforderungen hingegen können mit CAD-Poka-Yoke nur kontrolliert werden, wenn sie in prüfbare Kriterien übersetzt werden können.

CAD-Fehler können generell in zwei Phasen erkannt werden:

- während ihrer Entstehung: Der Modellierungsprozess wird präventiv geprüft.
- nach ihrer Entstehung: Die entstandenen Modellmerkmale werden nach dem Funktionsabschluss geprüft.

Das Erkennen eines bevorstehenden Fehlerauftretens wird als "Voraussage" und das Erkennen eines bereits aufgetretenen Fehlers "Entdeckung" genannt.

Man kann die CAD-Poka-Yoke in folgende wichtige Methodenteile bzw. Mechanismen unterteilen:
Präventive Prüfmechanismen:

- **Standardbasierte Prävention:** Eine der effektivsten Methoden, die den CAD-Ingenieur „zwingt“, methodisch zu arbeiten, ist die Verwendung von unterschiedlichen Standards. Dies können zum Beispiel Startmodelle mit vorgegebener Struktur sein, deren Änderung nicht erlaubt ist oder auch vorgegebene Bibliotheken mit unternehmensspezifischen Normteilen, Standard-Geometrieelementen oder Standard-Formelementen.


- **CAD-Poka-Yoke-Prüfprofil:** Die Qualitätsüberwachung während der Modellierung durch ein Check-Werkzeug erfolgt mit einem Prüfprofil, das aus unterschiedlichen numerischen Kriterien besteht. Dieses Prüfprofil stimmt nicht mit dem Prüf-Profil des Moduls Endprüfung überein, weil modellierungsbegleitend nicht alle Kriterien geprüft werden können und meistens prozessbezogen und nicht Modellmerkmalsbezogen geprüft wird. So kann in dem Prüfprofil eine Reihe von Formelementen definiert werden, die nicht zugelassen sind (prozessbezogene Prüfung) oder es können einige Modellmerkmale ständig im Hintergrund überprüft werden (modellmerkmalsbasierte Prüfung). Das Prüfprofil muss aus dem Pflichtenheft, also aus den zu implementierenden Modellmerkmalen abgeleitet werden.

- **Methoden des wissensbasierten CAD:** In den letzten Jahren bieten immer mehr CAD-Systeme die Möglichkeiten, unterschiedliche Elemente des Wissensmanagements in ein CAD-Modell zu implementieren. Dabei können in einem CAD- Modell unterschiedliche Regeln, Algorithmen und andere Elemente unterschiedlicher Programmiersprachen hinterlegt werden, die flexibel z. B. auf eine Geometrieänderung reagieren können. Dies können auch Regeln sein, die den Benutzer automatisch zwingen, vordefinierte Kriterien einzuhalten, oder auch die Modellierung durch die Nutzung der Daten aus Datenbanken etc. unterstützen können. Wichtig ist bei diesem Konzept, dass kein Prüfprogramm erforderlich ist und das Prüf-Know-how direkt im

---

31 Ein Beispiel ist KBE (Knowledge Based Engineering) von der Firma UGS, das erlaubt, in den CAD-Modellen des Systems NX die Regeln und Algorithmen zu hinterlegen.
CAD-Modell hinterlegt wird, so dass dieses Know-how auch mit dem CAD-Modell weitergereicht werden kann.

**Reaktionsmechanismen:** Bei der Entdeckung eines Fehlers oder bei dem Modellierungsschritt, der zu einem Fehler führen kann, werden von dem Prüfsystem unterschiedliche Schritte eingeleitet. Folgende Reaktionsschritte bei der CAD-Modellierung sind möglich:

- **Eingriffsmechanismus:** Bei diesem Mechanismus unterbricht das Software-System (das CAD-System oder der CAD-Check-System) den Modellierungsvorgang und greift automatisch ein. Mögliche Reaktionen sind (a) die automatische Korrektur der Eingaben auf die vorgegebenen richtigen Modellmerkmalwerte oder (b) keine Zulassung der verletzenden Modellierungsaktion. In vielen Fällen wird der Eingriffsmechanismus mit den Elementen des Warnmechanismus ergänzt.

- **Warnmechanismus:** Bei diesem Mechanismus wird der CAD-Ingenieur von dem System darauf hingewiesen, dass bei der Modellierungsaktion einige Modellmerkmale unzulässige Werte oder Ausprägungen annehmen. Weiterhin sollte die bei der Kriteriumdefinition definierten Lösungsvorschläge vorgestellt werden. Die Person hat dann die Wahl, ob die verletzende Aktion rückgängig gemacht wird, ob die Aktionswerte geändert werden oder ob die Aktion doch fortgesetzt wird (falls im Prüfprofil erlaubt). Bei Letzterem sind Eskalierungsmechanismen möglich, wie eine automatische Mitteilung an den Modellkunden oder den Projektleiter, dass eine Anforderung nicht erfüllt wird.


Abbildung 51: Zeitliche Abfolge der CAD-Poka-Yoke-Mechanismen.
Ein weiterer wichtiger Teil ist die laufende Kontrolle der weiteren Anforderungsgruppen, wie z. B. der organisatorischen oder zeitlichen Qualitätsanforderungen. Dafür ist nicht das CAD-System sondern die verwaltende Software (PDM-System) am besten geeignet. Es sollten besonders für die Erfüllung der organisatorischen Anforderungen Kontrollmechanismen definiert werden, wie z. B. Pflichtattribute, Plausibilitätsprüfungen oder fest vorgegebene Attribut-Auswahllisten. Dadurch können die Mindestanforderungen erfüllt werden.

5.4.4 Modul J: Modellierungsbegleitende Visualisierung und Vermittlung der Qualitätsinformationen


Vor der Auswahl der Visualisierungsart der Daten müssen die entsprechenden Informationen ausgewählt werden. Alles zu visualisieren kann eine Verwirrung beim Benutzer auslösen, so dass eine sichtbasierte Informationsfilterung notwendig ist (siehe Abbildung 52). Die Sichten sind dabei die Informationsfilter, die für den Benutzer nur die für ihn notwendige Information filtern. So interessieren den CAD-Modellerzeuger nur die von ihm zu implementierenden Merkmale, entsprechende CAD-Methodiken, aber nicht die generische Gesamtprojektübersicht, was wieder für den Projektleiter von Interesse ist.

Die Visualisierung wird in entsprechenden operativen Systemen erfolgen. Die Darstellung können Listen, Tabellen, Matrizen etc. sein, auf die wegen ihrer Allgemeinheit nicht näher eingegangen wird. Speziell für den Fall des 3D-CAD mit PDM bieten sich aber weitere sinnvolle Möglichkeiten an:

**Neue CAD-Qualitäts-Features:** Viele der Qualitätsinformationen können direkt im CAD-System visualisiert werden. Speziell dafür können neue CAD-Qualitäts-Features eingeführt werden. In allen modernen 3D-CAD-Systemen spielt der Spezifikationsbaum (oft auch Entstehungsgeschichte genannt) eine sehr wichtige Rolle. Die neuen Features können zu diesem Baum hinzugefügt und dort auch angezeigt werden (Abbildung 53). Die Features übernehmen doppelte Rolle. Erstens kann ihre Darstellung im Baum gesteuert werden. Dies kann durch entsprechende Piktogramme, Farben, Blinkeffekte etc. dargestellt werden [Lesz00]. Ein Beispiel ist die Darstellung eines Qualitäts-Features in der Form einer Ampel, die durch die rote Farbe die Nichteinhaltung bestimmter Anforderungen signalisieren kann.

32 Bei diesen Qualitätsfeatures handelt es sich nicht um die CAD-Features für die Qualitätssicherung der physischen Produkte (z. B. Bezüge für die Messtechnik etc.)

Abbildung 53: Prototypische Realisierung der CAD-Qualitäts-Features in NX3

**Direkte Darstellung an CAD-Modell-Elementen:** Besonders übersichtlich wird die Darstellung, wenn entweder Qualitätskriterien oder auch ihre Verletzung direkt am CAD-Modell visualisiert wird. Dafür bieten sich in einem CAD-System folgende Möglichkeiten an (siehe auch Abbildung 54), die angepasst verwendet werden können:

- **Gestaltdarstellung:** Dies können Änderungen der Farbe (z. B. auf Rot), der Form (z. B. auf gestrichelt bei Kanten), der Breite usw. sein.
- **Gruppiermöglichkeiten:** Dies können Layer (Abbildung 54 rechts), Gruppen, Blocks etc. sein. Zum Beispiel kann die fehlerhafte Geometrie auf eine spezifische Layer verschoben werden.
- **Hinweiselemente:** An die notwendigen Geometrieelemente können zusätzliche Hinweiselemente angebracht werden (z. B. hinweisende Textfelder).
- **Eingebettete Informationsfenster:** In die nativen Elemente der Bedienoberfläche können zusätzliche Informationsfenster mit Qualitätsinformationen eingebaut werden,
die direkt über das PDM-System mit den aktuellen gefilterten Informationen gefüllt werden.

Abbildung 54: Prototypische Visualisierung der Qualitätsinformationen am Beispiel von NX3
5 Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen

5.5 CAD-Modellqualitätsprüfung


- **Datenrückfluss in die Planungsphase:** Die Teile der Phase der Qualitätsplanung sind auf die Informationen aus der Modellnutzungsphase angewiesen. Die Analyse und Kontrolle der fehlerhaften Modelle kann wertvolle Daten, wie zum Beispiel die Nachbearbeitungsdauer (und somit die Problemwichtigkeit) oder Liste der Modellnutzer, liefern. Dadurch wird der evolutionäre Qualitätsregelkreis (s. Abbildung 20) geschlossen. Weiterhin kann ohne Qualitätsprüfung die Methodeneffektivität nicht überprüft werden.

- **Zeitlich versetzte Nutzung und Bewertung durch Modellkunden:** die CAD-Modelle werden oft zeitlich versetzt zu ihrer Erstellung genutzt. Dies trifft in den meisten Fällen auf die Modellweiterverwendung durch Nicht-CAD-Modellkunden in der Prozesskette und immer auf die Modellwiederverwendung durch andere CAD-Konstrukteure zu. Ohne eine Prüfung würden die Informationen nicht beim CAD-Modellerzeuger erscheinen. Darüber hinaus ist eine Qualitätsprüfung für die Prozesstransparenz und eine verursachergerechte Kostenzuweisung notwendig.

Dementsprechend werden auch die Qualitätsmodule der Phase abgeleitet (siehe Abbildung 55).

Abbildung 55: Module der Phase Modellqualitätsprüfung
Dies ist auf der einen Seite die Modellendkontrolle, die als Meilenstein direkt nach dem Abschluss der Modellierung erfolgt und die Messung Weiterverwendungsqualität, die erst bei der Modellnutzung geschieht. Weiteres wichtiges Thema in Bezug auf die CAD-Modellqualität nach der Modellierung ist die Entwicklung entsprechender Qualitätsskennzahlen (Qualitätsprozess-Controlling), die zu bestimmten Meilensteinen (z. B. Freigabe des FEM-Modells) während der Nutzungsphase abgeleitet werden. Die Kennzahlen dienen der anschaulichen Darstellung und Vermittlung der erreichten Modellqualität und vor allem als wichtiges Steuerwerkzeug für das Management.

5.5.1 Modul K: Modellendkontrolle


- **Checklisten (halb-manuelle Methode):** Die Checklisten sind ein verbreitetes Werkzeug für die effektive Kontrolle unterschiedlicher Tätigkeiten. Checklisten sind Fragenkataloge, die möglichst aus geschlossenen Fragen mit nur wenigen Optionen bestehen bzw. ankreuz- oder anklickbare Felder (Checkboxen) enthalten. Ziel von Checklisten ist es, keine wichtige Frage zu vergessen bzw. alle notwendigen Fragen zu beachten, um hinreichende Bedingungen für die Auswertung zu erhalten. Meistens sind das Papierblätter, die manuell ausgefüllt werden. Für das Ziel dieser Arbeit bietet sich eine elektronische Checkliste an, die in einem PDM-System ausgefüllt und weiterverarbeitet wird. Die Fragen sollten einfach und schnell beantwortbar sein. Da dies eine der wenigen Stellen ist, an der manuell geprüft wird, sollten die Checklisten die Prüfkriterien enthalten, die automatisch kaum zu prüfen sind. Es ist wünschenswert, unterschiedliche Checklisten abzuleiten: für den Modellersteller, für den Vorgesetzten etc. In vielen Fällen wird der Prüfer (oder Anwender selbst) das


Wie erwähnt, findet die Modellendkontrolle unmittelbar nach dem Modellierungsende statt. Falls die Produktentwicklung unter Unterstützung eines PDM-Systems erfolgt, wird an dieser Stelle ein PDM-Workflow angestoßen, meistens ein Freigabeworkflow. Ein Workflow ist ein Prozess (allgemein Vorgang oder Arbeitsablauf), der aus einzelnen Aktivitäten aufgebaut ist, die sich auf Teile eines Geschäftsprozesses oder andere organisatorische Vorgänge beziehen.

Ein Workflow wird durch unterschiedliche Mechanismen gesteuert. Sehr wichtig für die Steuerung beim Qualitätsmanagement ist die entsprechende Einteilung der Anwender. Dafür dienen in den meisten PDM-Systemen zwei Datenelemente:

- **Gruppe:** die Gruppen werden je nach der Unternehmensstruktur und –prozessen aufgebaut. Typische Gruppen sind: „Konstruktion“, „Vorentwicklung“ etc. Für die Ziele dieses Qualitätsmodules können weitere Gruppen definiert werden.


Die Anwender können (und sollten) unterschiedlichen Gruppen zugehören und auch mehrere Rollen haben. Die Steuerung eines Qualitätsworkflows darf somit nicht auf der Ebene des einzelnen Anwenders sondern auf der Gruppen- und Rollenebene ablaufen.
Abbildung 56: PDM-Workflow für die Freigabe der CAD-Modelle

In einem konventionellenWorkflow (Abbildung 56 oben) wird das CAD-Modell nach der Eigenprüfung des Erzeugers vom Prüfer auf die konstruktiven Kriterien geprüft und dann entweder freigegeben oder zurückgewiesen. In einigen Fällen können dann zusätzliche Schritte folgen, wie Prüfung auf die Normhaftigkeit der Zeichnung oder auch Archivierung im File-Archiv.

In einem Freigabe-Workflow mit dem QM für CAD-Modelle muss der CAD-Modellerzeuger in dem ersten Schritt eine Eigen-QM-Prüfung durchführen, meistens bestehend aus einer elektronischen PDM-Checkliste, die für weitere Nachverfolgungszwecke gespeichert und ausgewertet werden kann. Falls einige Pflichtkriterien nicht erfüllt wurden, muss das CAD-Modell geändert werden. Das wichtigste an dieser Stelle ist, dass dem Modelllieferanten bewusst wird, dass diese Prüfung nachvollziehbar im PDM-System gespeichert wird, so dass bei späteren Problemen der Verursacher ermittelt werden kann.

Das Gleiche passiert, wenn das CAD-Modell einige Pflichtkriterien des automatischen Checkers nicht erfüllt, der unter Nutzung eines Endkontrolle-Prüfprofils ausgeführt wird. Erst am Ende wird das CAD-Modell konstruktiv von dem Prüfer geprüft, wobei aber auch denkbar ist, dass auch dieser Endprüfer eine stichprobenartige Prüfung der QM-Kriterien durchführt.
Entwicklung der Methodik zum Qualitätsmanagement von CAD-Modellen


5.5.2 Modul L: Messung der Weiterverwendungsqualität


- Es lässt sich erkennen, ob der Modellierungsprozess statistisch beherrscht ist. Dabei ist wichtig, ob ein Trend in der Nachbearbeitungszeit erkennbar ist.
- Die Daten aus der Qualitätskontrollkarte können auch als ein Planungsinstrument eingesetzt werden, weil die Modellvorbereitungszeit somit abgeschätzt werden kann.
- Die Qualität der in anderen Phasen ausgearbeiteten Informationen (Modellanforderungen, Kriterien, Modellmerkmale etc.) lässt sich anhand der Länge der Nachbearbeitungszeit erkennen.

Bei wenigen Projekten wird es möglich sein, die Nachbearbeitungszeit vollständig zu eliminieren. Wichtiger ist es zu erkennen, welche Anteile der Nachbearbeitungszeit auf die...
Nichterfüllung der spezifischen Kundenmodellanforderungen und welche auf die Vorbereitungstätigkeiten des Modellkunden zurückzuführen sind, die nicht direkt mit der Qualität des CAD-Modells zu tun haben und auf die technischen Besonderheiten der Kundenaufgabe zurückzuführen sind. So besteht bei der Erstellung eines FEM-Modells der Vorgang „Modellvereinfachung“ z. B. aus der Tätigkeit „Einzelheiten entfernen“, die maßgeblich vom Aufbau des CAD-Modells abhängt, und aus der Tätigkeit „CAD-Modell partitionieren zwecks Zuweisung unterschiedlicher Werkstoffe“, die von dem CAD-Modell weitgehend unabhängig ist. Dies erfordert die Klassifizierung der Nachbearbeitungszeit und die Einteilung in unterschiedliche fixe und variable Anteile:

\[
    t_{Nachb.} = t_{Inspektion} + t_{CAD} + t_{Verfahren} + t_{Sonstiges}
\]


- \( t_{CAD}: \) Nachbearbeitungszeit wegen schlechter CAD-Modellqualität. Diese Zeit steht maßgeblich für die ganzheitliche Definition der Modellqualität und deshalb ist es besonders interessant, sie aufzunehmen.

- \( t_{Verfahren}: \) Nachbearbeitungs- bzw. Vorbereitungszeit wegen CAD-unabhängiger und durch CAD nicht beeinflussbarer Prozesse und Aufgaben des Modellkunden. Diese Tätigkeiten dienen zwar der Modelländerung und -nachbearbeitung, können aber wegen des spezifischen Know-how-Bedarfs nicht auf den CAD-Konstrukteur verlagert werden.

- \( t_{Sonstiges}: \) Zeiten, die keinem anderen Bereich zugeordnet werden können. Für diese Arbeit wird angenommen, dass sie für die Bewertung der Modellqualität nicht von Bedeutung sind.

Die Einteilung entspricht der zeitlichen Reihenfolge: Das CAD-Modell wird überprüft, von Fehlern befreit und dann für die weitere Tätigkeiten geändert. Eine feinere Einteilung wäre in dem Praxiseinsatz nicht realisierbar. Im Idealfall des Einsatzes des Qualitätsmanagements wird nach einigen Modellierungsvorgängen mit dem Rückfluss der Informationen in die Planungsphase \( t_{CAD} \) minimiert, wenn nicht sogar eliminiert. Abbildung 57 zeigt eine beispielhafte Verteilung der Bearbeitungszeit eines CAD-Modells bei einem Modellkunden. Die Nachbearbeitungszeit \( t_{CAD} \) wird durch den Einsatz des Qualitätsmanagements minimiert, wohingegen verfahrensspezifische Änderungen des CAD-Modells meistens nicht durch den CAD-Konstrukteur beeinflusst werden können.
Abbildung 57: Beispielhafte Verteilung der Zeit bis zum Anfang der wertbringenden Modellbearbeitung


hinaus sollten bei jedem Eincheckvorgang vom Modellkunden Kommentare eingefügt werden können.

Abbildung 58: Erweiterung der Stati in der Produktentstehung

Die Vorteile der Aufnahme der Nachbearbeitungszeit sind die hohe Genauigkeit der Ergebnisse durch die PDM-seitige Unterstützung des Konstrukteurs und die Minimierung der menschlichen Fehler, wie z.B. Vergesslichkeit. Weiterhin kann die Auswertung und die Aufstellung der Statistiken vollständig automatisiert werden, so dass die Ergebnisse sofort in die Planungsphase einfließen können. Die Gründe für die Nachbearbeitung und die Vorschläge für die Mängelbeseitigung können als weitere Information während des Statuswechsels eingetragen werden. Dafür können in dem PDM-System spezielle Formulare entwickelt werden, die unter anderem qualitätsbezogene Artikelattribute steuern.

Für den Fall, dass aus irgendwelchen Gründen vergessen wurde, während der Arbeit den Status zu wechseln, sollte ein PDM-Formular für die nachträgliche Eintragung der Nachbearbeitungszeiten entwickelt werden. Darüber hinaus müssen organisatorische Richtlinien definiert werden, welche Status wann zu setzen sind und, vor allem, wann die Eincheck- und Auscheck-Vorgänge auszuführen sind.
5.5.3 **Modul M: Qualitätsprozess-Controlling**


Folgende Kennzahlen werden in dieser Arbeit entwickelt (Definitione der einzelnen Zeitanteile s. Kapitel 5.5.2):

**Kennzahl A: Nachbearbeitungsanteil:**

Anteil der Arbeitszeit, die CAD-Modellkunden mit der CAD-Modellnachbearbeitung verbringen

Zielwert: Nährung zu 0.

Formel 2: \[ A = \frac{t_{CAD} + t_{Insp.}}{t_{gesamt,Kunde}} \]  
Formel 3: \[ A_{gesamt} = \frac{\sum_{i=1}^{n}(t_{CAD,i} + t_{Insp.,i})}{\sum_{i=1}^{n}t_{gesamt,Kunde,i}} \]

Diese Kennzahl vermittelt, wie viel Arbeitszeit die Modellkunden durch fehlerhafte CAD-Modelle mit der Nachbearbeitung verbringen. Diese Kennzahl kann auf einen konkreten
Modellkunden, also eine Person, bezogen werden (Kennzahl A). Weiterhin können die Daten akkumuliert werden, so dass die Nachbearbeitungszeiten einer Abteilung oder sogar der Firma summierten werden (\(A_{\text{gesamt}}\) für \(n\) Abteilungen bzw. Modellkunden). Die Zeiten können entweder im PDM-System durch die Summierung der Status-Zeiten (siehe vorherigen Abschnitt) oder auch durch manuelle Notierung erfasst werden.

**Kennzahl B: Qualitätsmanagement-Anteil**

*Anteil der Arbeitszeit, die CAD-Modellerzeuger für das Qualitätsmanagement aufbringen*

**Zielwert:** zwischen 0 und 1.

\[
B = \frac{t_{\text{QM,Erzeuger}}}{t_{\text{gesamt,Erzeuger}}}
\]


**Kennzahl C: Qualitätsmanagement-Nutzen**

*Verhältnis des Aufwandes seitens des CAD-Modellerzeugers zu der eingesparten Zeit seitens des Modellkunden*

**Zielwert:** kleiner als 1.

\[
C = \frac{t_{\text{QM,Erzeuger}}}{t_{\text{CAD}} + t_{\text{Insp.}}}
\]

Diese Kennzahl muss auf jedem Fall kleiner als 1 sein. Im umgekehrten Fall bedeutet der Einsatz des Qualitätsmanagements für die CAD-Modelle nur einen erhöhten Aufwand für ein Unternehmen. Zu beachten ist, dass ein CAD-Modell oft mehrmals verwendet wird, so dass in diesem Fall alle potentiellen Verwendungsvorgänge zu recherchieren sind.

Alle drei Zahlen können automatisch aus den im PDM-System berechneten Zeiten abgeleitet werden. Die Empfehlungen für die Zielwerte lassen sich nur für jeden konkreten Fall aussprechen, weil in jedem Unternehmen eine individuelle Ausgangslage herrscht, die auch unterschiedliche Zielwerte erfordert.

Man kann die formelle Bedeutung der Kennzahlen folgenderweise umformulieren und zusammenfassen:
A: Wie gut sind die CAD-Modelle?
B: Wie viel Zeit verbringen anteilsmäßig die CAD-Modellerzeuger mit dem Qualitätsmanagement?
C: Ist Qualitätsmanagement für CAD-Modelle wirtschaftlich?


![Ampelsystem](image)

Abbildung 59: Ampelsystem


Sobald ein Kennzahlensystem existiert, kann es auch zusätzlich für Benchmarking verwendet werden. Für CAD-Modelle bietet sich besonders gut internes Benchmarking an. Es kann mit anderen Einheiten des Unternehmens verglichen werden. Internes Benchmarking kann bei CAD-Modellen sogar viel effektiver durchgeführt werden, weil die Produkte (also in diesem Fall CAD-Modelle) meistens in einer Abteilung bzw. einem Team entstehen, so dass diese organisatorischen Einheiten miteinander verglichen werden können.

---

³⁴ GUI: Graphical User Interface (Programmoberfläche)
5.6 CAD-Modellqualitätsverbesserung

Die Phase der Qualitätsverbesserung enthält Maßnahmen zu der dauerhaften Einstellung der geforderten Qualität der CAD-Modelle. Die Methoden und Module dieser Phase haben als Schwerpunkt die Gewährleistung der Anwendung der Module aus anderen Phasen auf der einen Seite und Maßnahmen zur Wiederverwendung dieser Informationen auf der anderen Seite. Es reicht nicht aus, Methoden für die einmalige Nutzung aufzustellen. Der Aufwand für die Methodeninitiierung kann in einigen Fällen relativ hoch sein. Erst durch die Wiederverwendung der Qualitätsinformationen in weiteren Projekten bzw. Produktentwicklungen kann die bessere Modellqualität richtig zur Geltung kommen. Dafür sind unterschiedliche Maßnahmen erforderlich, die in nachfolgenden Abschnitten beschrieben werden.

5.6.1 Modul N: Wiederverwendung der Qualitätsinformation

Im Kapitel 5.3.2 wurde der Ansatz der Abspeicherung der Modellqualitätsanforderungen in Form der Anforderungsvorlagen (Qualitäts-Template) angesprochen. Grundsätzlich können für die Wiederverwendung der Qualitätsinformationen einige Ansätze des Wissensmanagements³⁵ angewendet werden. Die Problematic ist, dass obwohl die meisten Ergebnisse in der Form explizites Wissens vorliegen (oder sogar vollständig formalisiert in Form von CAD-Modellen etc.), einige wichtige Informationen nur implizit bei den Methodenanwendern vorhanden sind. Die Herausforderung ist also auch, wenigstens einige Teile dieses impliziten Wissens in formale Form zu überführen. Obwohl die Qualitätsinformation nur selten vollständig verwendet werden kann, können oft wenigstens Teilinformationen nutzbar gemacht werden. Die Information kann auf unterschiedlichen Ebenen wiederverwendet werden.

Im ersten Schritt ist es wichtig, bei der Wiederverwendung der Qualitätsinformationen festzustellen, in welchen Elementen das akquirierte Qualitätswissen liegt, so dass es auch entsprechend wiederverwendet werden kann. Ein Fehler wäre, nur die Modulvorgehensweise oder nur Qualitätskriterien zu dokumentieren, weil eine Vielzahl an zusätzlichen Daten und Informationen bei der Ausführung entsteht. Mindestens folgende Wissensinformationen bzw. Wissenselemente können und sollen wieder verwendet werden (auch [Chas06]):

- **Informationen, Vorgehensweisen und Ergebnisse einzelner Qualitätsmodule:** In jedem Qualitätsmodul des Konzeptes fallen unterschiedliche Daten und Informationen als Ergebnisse an. Einige dieser Ergebnisse sind fallspezifisch, viele aber auch für weitere Modellierungen verwendbar. Die wichtigsten Ergebnisse sind:

- **Neutralisierte Qualitätsanforderungen, Qualitätsmerkmale und Qualitätsprüfkriterien**

³⁵ Wissensmanagement bezeichnet eine Richtung der Managementlehre, die darauf abzielt, in Organisationen das Wissen einzusetzen und zu entwickeln, um die Unternehmensziele bestmöglich zu erreichen.
• CAD-Modellkundenlisten und die Auflistung der entsprechenden Anforderungen und Gewichtungen

• **Vorlagen für CAD-Modell-Design-Review und Readiness Checks**
  a. Zusammengefasste CAD-Modell-Lasten- und Pflichtenhefte
  b. Prüfprofile für die Prüftools
  c. Vordefinierte Qualitätskennzahlen mit entsprechenden Richtwerten

• **3D-CAD-Vorlagen:** 3D-Vorlagen (oft als Startmodelle oder Seed-Parts bezeichnet) bilden die Grundlage der strukturierten CAD-Modellierung. Sie werden in ersten Durchläufen des durchgängigen QM für 3D-CAD-Modelle entwickelt und können danach ohne Änderung sehr breit für alle Modellierungsvorgänge eingesetzt werden. Sie enthalten meistens unterschiedliche Elemente (z. B. Layer-Struktur, Benennungsvorschrift, Attribute), die die spätere Weiterwendung des fertigen Modells und somit auch dessen Qualität erheblich steigern können.

• **3D-CAD-Modelle:** Auch die 3D-CAD-Modelle an sich können unterschiedliche optimierte Bereiche bzw. Methodikergebnisse beeinflussen. Im optimalen Fall können sie für ähnliche Modellierungsaufgaben wiederverwendet werden. Die Voraussetzung dafür ist die durchgängige CAD-Modell-Dokumentation, wie im Kapitel 5.6.2 beschrieben. Zusätzlich müssen die Modelle um 3D-Kommentare, 3D-Fertigungshinweise und weitere Hinweise erweitert werden.

• **Metadaten des Produktdatenmanagementsystems:** Die Metadaten (Attribute, Entstehungsgeschichte, Information über Freigaben etc.) werden in den PDM-Systemen standardmäßig abgespeichert und versioniert. Auch ein Qualitätssystem für die Verbesserung der Modellqualität wird die meisten Metadaten im PDM-System abspeichern, nicht zuletzt, weil diese Systeme direkt mit dem CAD-System gekoppelt sind. Wichtig ist, dass durch die entsprechende Verlinkung der Qualitätsinformationen der einzelnen Vorgänge die Metadaten mit dem Qualitätsworkflow verknüpft sind, so dass die entsprechende Attributierung etc. nachvollzogen werden kann.

• **IT-System-Konfigurationsdaten:** Die Konfiguration eines 3D-CAD-Systems spielt eine sehr wichtige Rolle und kann je nach dem Anwender oder nach dem Einsatzzweck unterschiedlich sein [Chas06]. Allgemein kann man sagen, dass die Systemkonfiguration aus einer Vielzahl von Parametern besteht, die oft in unterschiedliche Gruppen zusammengesetzt sind. Diese Konfigurationsdaten können in modernen CAD-Systemen als so genannte Profile (oder Anwenderrollen) abgespeichert werden. Je nach dem Konfigurationsprofil können unterschiedliche Aspekte der CAD-Modellierung und somit auch die Modellqualität gezielt beeinflusst werden.

Die Zusammenfassung dieser Daten und Informationen kann als ein „Modellqualitäts-Template“ bezeichnet werden. Diese Vorlage beschreibt meistens einen generischen Anwendungsfall und kann mit einer konkreten Anpassung angewendet werden.

Abbildung 60: Konzept des Qualitäts-Templates

Eine Voraussetzung für jegliche Verwendung der Qualitätsvorlagen stellt ein entsprechendes Datenbank-Datenmodell dar. Dieses wird im Kapitel 6.2 eingeführt.

5.6.2 Modul O: Dokumentation und Vermittlung der Qualitätsinformation

Die Vermittlungs-Methoden sind im Einzelnen (s. auch [HaAJ06, AbBo03]):

- **Schulungsunterlagen**: Die meisten Ergebnisse der einzelnen Qualitätsmodule werden in Unterlagen für die Anwenderschulungen verwendet. Anwesenheitsschulungen sind die beste, aber auch die aufwendigste Variante der Wissensvermittlung. Durch die ständige Betreuung durch den Trainer können alle Fragen sofort geklärt werden, so dass die Vermittlungsqualität auf einem sehr hohen Niveau ist.


- **CAD-Portal**: Ein Intranet-CAD-Portal ist die beste Methode, die Informationen schnell zu den Anwendern zu bringen und aktuell zu halten. Besonders effektiv ist dies mit zusätzlichen Funktionen wie CAD-Newsletter oder auch FAQs (Listen der Fragen und Antworten) zu realisieren.
• **CAD-Handbuch:** Als Nachschlagewerk und Hilfe für Schulungen ist ein CAD-Handbuch geeignet. Ein Handbuch sollte sowohl aus einigen Pflichtanforderungen für die Anwender als auch einigen methodischen Empfehlungen bestehen. Die Herausforderung ist dabei, zu erreichen, dass die Anwender das Handbuch im Alltag nutzen. Dies kann nur durch regelmäßige CAx-, „Öffentlichkeitsarbeit“, wie Anwendertreffen und Workshops erreicht werden.

• **CAD-Richtlinien und CAD-Werksnorm:** Diese internen Werke haben im Unterschied zu einem Anwenderhandbuch einen formaleren und zwingenderen Charakter. Die Inhalte müssen gewährleisten, dass wichtige und vor allem prüfbare Qualitätskriterien eingehalten werden. Durch eine Ausführung als eine Norm sollte erreicht werden, dass organisatorische Prüfinstanzen ein wichtiges Werkzeug zur Überprüfung und vor allem Durchsetzung der Qualitätsanforderungen erhalten.

• **CAD-Prüfprofil:** Das CAD-Prüfprofil (s. Kapitel 5.5) stellt eine gewisse Zusammenstellung der Ergebnisse der Methodik dar und enthält in der formalen Sprache des Prüftools die zu prüfenden Qualitätskriterien.

• **CAD-Datenaustauschrichtlinien:** In CAD-Datenaustauschrichtlinien werden u.a. die Vorgehensweisen und Standards bei der Nutzung der externen CAD-Modelle vorgegeben. Diese Richtlinien konzentrieren sich weniger auf die methodische Modellierung als vielmehr auf die Einhaltung der organisatorischen und numerischen Qualitätsmerkmale.

### 5.7 Anwendung durch Kombination und Anpassung der Methodik-Bausteine


Ehrlenspiel [Ehrl03] schlägt vor, die Unterstützungswerkzeuge aufgrund ihrer Funktion zu bewerten und auszuwählen. Dieses Konzept wird für diese Arbeit angepasst. Die Grundlage der Modulauswahl und Modulkombination sind die Aufgaben und die In- und Outputgrößen. Im ersten Schritt muss die vorliegende Situation analysiert werden und in einzelne Probleme aufgeteilt werden. Diese Probleme können dann zu den entsprechenden Aufgaben der Module gemappt werden. Die einzelnen Module können über die entsprechenden Input und Outputdaten verbunden sein. So sind für die Anwendung bestimmter Module einige Inputdaten notwendig, die Outputdaten anderer Module darstellen. Somit ist es nicht
ausreichend, nur eine Aufgabe isoliert zu betrachten sondern es muss beachtet werden, welche Daten ein Qualitätsmodul für die Fertigstellung seiner Aufgabe braucht. Nicht alle Daten können aber von vorhandenen Qualitätsmodulen zur Verfügung gestellt werden. In diesem Fall müssen diese Daten aus externen zusätzlichen Datenquellen bereitgestellt werden.

Abbildung 62: Beispiel der Modulauswahl

Abbildung 62 zeigt die entsprechende Vorgehensweise für die Auswahl der Qualitätsmodule.
6 Konzept zur Implementierung und Anwendung des Qualitätsmanagements für die CAD-Modelle

6.1 Vorgehensweise bei der Einführung der Methode

In diesem Kapitel soll eine allgemeine Vorgehensweise für die Einführung des Qualitätsmanagements für CAD-Modelle bzw. Methoden für das Projektmanagement für die Einführung aufgezeigt werden. Die neue Qualitätsmethode dient der Verbesserung der ganzheitlichen Modellqualität bzw. i.A. der unternehmensweiten Optimierung der Produktentstehung. Dies ist eine Aufgabe, die dem Management bzw. sogar dem Top-Management zuzuschreiben ist, so dass die Einführung nach dem typischen Top-Down-Ansatz durchgeführt werden sollte. Die Unterstützung durch das Top-Management-Engagement und die Bereitstellung der Mittel ist eine Voraussetzung für den Projekterfolg [EiSt01, VaWe06]]. Weitere kritische Faktoren sind eine klare und realistische Zielsetzung, eine eindeutige Aufteilung der Zuständigkeiten und die effektive Kontrolle der Einführung.

Folgende generische Phasen sollten Bestandteile des Einführungsprojektes sein:

**Ermittlung des Ist-Zustandes:** Im ersten Schritt muss (am besten durch ein Vorbereitungsprojekt oder durch den Einsatz eines Beraterteams) die Ist-Situation analysiert und vor allem die Potentiale ermittelt werden. Dies ist die Phase, die vom Top-Management angestoßen und angeleitet werden muss. Es muss die gesamte CAX-Prozesskette analysiert werden. Bei einer großen Firma bietet sich die Durchführung eines so genannten „Black-Belt-Projekts“ im Rahmen der Six-Sigma-Methode. Durch eine strukturierte Vorgehensweise in solchen Projekten und den übergreifenden Einsatz der Qualitätstechniken wird die Analysequalität gesteigert. Einzelne Schritte der Phase sind:

- Ist-Analyse, Schwachstellenanalyse etc.
- Ermittlung der Potentiale, Abschätzung des Nutzen und der Kosten
- Erstellung des Lastenheftes für das Projekt

**Konzeptphase / Grobspezifikation:** In dieser Phase werden im ersten Schritt klare Ziele definiert und zusätzlich durch eine Abbildung in Kennzahlen festgehalten. Danach werden als Ergebnis der Ist-Analyse repräsentative Referenzszenarien abgeleitet, die später der Konzeptvalidierung dienen. Darüber hinaus dienen die Referenzszenarien der Risikoabgrenzung, weil an diesen Szenarien die Konzepte laufend überprüft werden. Die generischen Qualitätsmodule sind ein wichtiges Ergebnis dieser Phase. Einzelne Schritte der Phase sind:

- Zielklärung
- Definition der Referenzszenarien
- Aufstellung des gesamten Qualitätskonzeptes
Entwicklung der generischen Qualitätsmodule

**Feinspezifikation:** Im Unterschied zu der Grobspezifikation werden in der dritten Phase die Methoden detailliert und die u.U. notwendigen Software-Werkzeuge ausgewählt. Die Detaillierung macht auch eine Durchführung eines Business Case möglich. Von den Ergebnissen des Business Case hängt auch die Entscheidung über die Projektfortsetzung ab. Einzelne Schritte der Phase sind:

- Auswahl notwendiger Software-Module
- Entwicklung der Qualitäts-Templates und der Qualitätsprozesse
- Organisatorisches Konzept
- Entwicklung des Schulungskonzeptes und der Schulungsunterlagen
- Durchführung eines Business Case
- Go/No-Go-Entscheidung

**Testphase:** In der Testphase werden die entwickelten Qualitäts-Methoden an den definierten Referenzszenarien getestet. Weil das Testen oft sehr zeitaufwendig ist, sollten keine alten Fälle nachmodelliert werden, sondern im Laufe eines neuen realen Projektes mit neuen Methoden gearbeitet werden. Sollte eine Anwenderschulung notwendig sein, müssen hier die notwendigen Schritte eingeleitet werden. Einzelne Schritte der Phase sind:

- Anwendung der Methoden an die Referenzszenarien
- Anwenderschulung

**Roll-Out-Phase:** Die letzte Phase der Implementierung ist eine unternehmensweite Einführung des Qualitätsmanagements. Die Erfahrungen aus den Referenzszenarien dienen darüber hinaus der feinen Methodenabstimmung. Ein weiterer wichtiger Punkt in dieser Phase ist die laufende Erstellung von Kostenberichten, die in regelmäßigen Abständen an das Management zu richten sind.

Auf einige weitere wichtige Faktoren, wie Phasen eines Business Case und psychologische Faktoren wird in den nächsten Kapiteln eingegangen.
6.2 IT-Systemkonzept für die Unterstützung der Methodik

6.2.1 Übersicht der IT-Systemarchitektur


Es muss angestrebt werden, dass die meisten Qualitätsmodule in diesem PDM-System implementiert werden. Die dafür notwendigen Datenelemente oder auch Funktionen können

Weitere (im Einzelfall) zu implementierende Komponenten können sein:

- **Qualitätsmanagement-Portal:** Auf diesem Portal werden unterschiedliche QM-bezogene Informationen abgelegt. Vor allem dient dieses Portal als eine zentrale Informationsquelle für alle Anwender. Insbesondere die ausgearbeiteten Handbücher oder Normen können dort zur Verfügung gestellt werden.

- **E-Learning-Server:** Ein sehr wichtiger Baustein der Vermittlung der Qualitätsinformationen und für die kontinuierliche Qualitätsverbesserung ist eine effektive Anwendung des E-Learnsings und Blended Learnings (s. Kapitel 5.6.2). PDM-Systeme bieten diese Funktionalität nicht an, so dass dafür eine separate Umgebung implementiert werden muss, die aber auf die vorhandenen Server zugreifen kann. Auf diese Art und Weise können in E-Learning-Einheiten auch CAD-Modelle und andere Dokumente direkt aus dem PDM-System benutzt werden.

- **Workflowmanagement-System:** Workflowmanagement wird in vielen Qualitätsmodulen benutzt. Bei vielen PDM-Systemen ist es eine Standardfunktionalität, so dass kein separates System notwendig ist. Allerdings existiert eine Reihe von PDM-Systemen, deren Workflow-Module entweder nicht ausgereift sind oder sogar überhaupt nicht existieren. In diesem Fall muss ein separates, aber mit dem PDM-System gekoppeltes System implementiert werden.

- **CSCW/Groupware:** CSCW- und Groupware-Systeme werden für die effektive virtuelle Kommunikation benutzt, was meistens eine Schwäche der PDM-Systeme ist. Die typischen Elemente eines CSCW-Systems sind Konferenzen, White-Boards, E-Umlaufmappen etc.

Wie der Abbildung Abbildung 63 zu entnehmen ist, muss angestrebt werden, dass durch eine Erweiterung der vorhandenen IT-Systemlandschaft keine redundanten Datenbasen entstehen. Deshalb sollten alle Systeme auf eine Datenbank- und Dateiserver-Landschaft zugreifen.

### 6.2.2 Informationsmodell und Informationsobjekte für die Implementierung der Methode

Für die IT-Abbildung ist ein Datenmodell notwendig. Die Zielsetzung dieses Kapitels ist nicht die vollständige Definition des Datenmodells, sondern die Definition der Basis zur Implementierung einer Datenbank bzw. eines Repository. Für den jeweils konkreten Anwendungsfall muss dieses Datenmodell erweitert bzw. angepasst werden.

Das Informationsmodell strukturiert sich um die Kernklassen CAD-Modell, Kundenmodell, Modellmerkmal und Modellanforderung. Abbildung 64 zeigt das Informationsmodell als UML2-Klassendiagramm ohne Attribute Alle Zusammenhänge werden im Allgemeinen in den entsprechenden Kapiteln erklärt. Datenmodellklassen werden zum größten Teil
eingruppiert nach dem Themenbereich dargestellt, allerdings ist das nicht bei allen Klassen möglich. Hier soll nur auf die wichtigsten Aspekte eingegangen werden.

Abbildung 64: Grobes Datenmodell zum Qualitätsmanagement der CAD-Modelle

Einige Elemente dieses Datenmodells wurden in Praxisprojekten im Kapitel 7 angewendet und validiert. Weiterhin wird im Kapitel 7.2.5 eine Implementierung des angepassten Datenmodells in eine relationale Datenbank mit der Internet-Anbindung und CAD-Modell-Darstellung beschrieben.
6.3 Business Case des Methodeneinsatzes

Ein Business Case ist ein Szenario zur betriebswirtschaftlichen Beurteilung einer Investition. Auch das Qualitätsmanagement für CAD-Modelle stellt eine nicht unerhebliche Investition dar und muss gegenüber der Geschäftsführung eines Unternehmens seine Aussichten auf Gewinn hinreichend überzeugend begründen, um genehmigt zu werden.


6.3.1 Kosten-Nutzen-Analyse eines Qualitätsmanagementsystems für CAD-Modelle


Abbildung 65: Grundlagen der Kosten-Nutzen-Analyse des QM für CAD-Modelle (in Anlehnung an [EiSt01])
Konzept zur Implementierung und Anwendung des Qualitätsmanagements für die CAD-Modelle

<table>
<thead>
<tr>
<th>Kosten</th>
<th>Direkte Kosten</th>
<th>Indirekte Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einmalige Kosten</td>
<td>- Lizenzkosten</td>
<td>- Zusätzliche Schulung der Anwender</td>
</tr>
<tr>
<td></td>
<td>- U.U. zusätzliche Hardware</td>
<td>- Zeitaufwand bei Modellkunden und -erstellern für Methoden-Workshops</td>
</tr>
<tr>
<td></td>
<td>- Erstellung der Qualitäts-Templates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zeitaufwand für die Methodenausarbeitung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zeitaufwand für die Dokumentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zeitaufwand für die Definition von Abläufen und Arbeitsprozessen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zeitaufwand für die Definition von Abläufen und Arbeitsprozessen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Projektmanagement der Einführung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Projektmanagement der Einführung</td>
<td></td>
</tr>
<tr>
<td>Laufende Kosten</td>
<td>- Lizenzwartung</td>
<td>- Laufende Schulungen</td>
</tr>
<tr>
<td></td>
<td>- Pflege der Qualitäts-Templates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zeitalicher Mehraufwand für die Modellprüfung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zeitalicher Mehraufwand für Absprachen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zeitalicher Mehraufwand bei der 3D-Modellierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Laufende Wartung der Methodendokumentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- organisatorischer Mehraufwand (CAD-Modell Quality-Gates etc.)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5  Kosten des QM für CAD-Modelle

Tabelle 6 zeigt unterschiedliche Nutzeneffekte der Methode. Die Herausforderung ist es, diese Effekte zu quantifizieren. Die quantifizierbaren Effekte resultieren in den meisten Fällen in einer Berechnung der gewonnenen/eingesparten Arbeitszeit, was in einigen Fällen (z. B. Modellnutzung statt Modellneuerstellung) einfach aber in den meisten Fällen (z. B. Reduzierung der Nachbearbeitungszeit) schwer ist. Erschwerend wirkt sich auch die Tatsache, aus, dass ein Business Case vor der Methodenentwicklung entsteht, so dass viele Annahmen notwendig sind, was eine weitere Risikoquelle darstellt.
Tabelle 6  Nutzen des QM für CAD-Modelle

Sehr schwer zu schätzen sind die so genannten Opportunitätskosten, also Umsatzeinbußen, die z. B. durch entgangene Aufträge (z. B. wegen Imageverlusts oder auch fehlender Kapazitäten aufgrund von zeitraubender Modellierung) entstehen. Auf dieser Stelle ist ein Blick in die Zukunft notwendig, weil hier ein Gewinn abgeschätzt werden muss, der künftig bei der gleich bleibenden schlechten CAD-Modellqualität als entgangener Erlös zu betrachten ist.

Wie Abbildung 66 zu entnehmen ist, spielt nicht die Zeit sondern eher die Anzahl der Modellierungsvorgänge eine entscheidende Rolle für das frühere Eintreten der Gewinnschwelle. Anders ausgedrückt spielt dabei auch die Anzahl der Konstrukteure eine große Rolle. Je größer ein Unternehmen ist und je mehr Konstrukteure mit der CAD-Modellierung beschäftigt sind, desto früher werden die anfänglichen Einführungskosten durch den Nutzen übertroffen.

### 6.3.2 Kritische Erfolgsfaktoren und Risiken

Fast alle Business Cases beinhalten Unsicherheit, weil sie die Ergebnisse für die Zukunft projizieren. Wichtig ist es schon vor dem Start des Projektes die entsprechenden kritischen Faktoren und Risiken zu definieren, durch die das Projekt in Gefahr gebracht werden kann. Tabelle 7 zeigt eine Auswahl kritischer Risiken, die beim QM für CAD-Modelle auftreten können und denen durch entsprechende Maßnahmen vorgebeugt werden sollten.

<table>
<thead>
<tr>
<th>Risiko</th>
<th>Gegenmaßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unzureichende Management-Unterstützung</td>
<td>Initiierung des Projektes erst nach der Zusicherung der vollsten Unterstützung des Managements</td>
</tr>
<tr>
<td>Mangelhafte Akzeptanz bei CAD-Konstrukteuren und bei Modellkunden</td>
<td>Anwenderfreundliche Konzipierung der Methoden; Einbeziehung aller Parteien in die Konzipierung</td>
</tr>
<tr>
<td>Zeitmangel bei Anwendern für die Anwendung der Methode</td>
<td>Unterstützung des Managements und der Vorgesetzten</td>
</tr>
</tbody>
</table>
Grobe Fehleinschätzungen bei der Einsatzplanung der Methode | Gründliche Planung der Methoden; Einsatz eines Beraterteams

Überschätzung der Softwarepotentiale für die Modellprüfung; technische Probleme (z. B. Modellmerkmale können nicht implementiert werden). | Testen der Prüfsoftware; Aufstellen und Durchführen der Referenzszenarien; Analyse des CAD-System-Funktionsumfanges

Erhöhte Projektkosten bzw. -dauer; Schlechtes Kosten-Nutzen-Verhältnis durch fehlerhafte Kosten-Nutzen-Analyse | Durchführung eines Business Case; detaillierte Aufstellung aller Kosten und Nutzen; Quantifizierung aller Einflüsse

Unzureichende Qualifizierung der Anwender (mangelnde Zeit und Qualifizierungsmaßnahmen) | Rechtzeitige Schulungsmaßnahmen; E-Learning und Blended-Learning; Aufbau eines Betreuerteams

| Tabelle 7 | Einführungsrisiken der Methode |

### 6.4 Der Mensch im Qualitätsmanagementprozess der CAD-Modelle

Einer der wichtigsten Faktoren in der Methode ist der Mensch, in diesem Fall als CAD-Modellerzeuger und CAD-Modellkunde. Die Mitarbeiter befinden sich oft in einem Spannungsfeld [Gerk04].

---

Abbildung 67: Psychologisches Spannungsfeld des Qualitätsmanagements für CAD-Modelle (in Anlehnung an [Gerk04])
Erst dadurch, dass Mitarbeiter hinter der Methode stehen und sie im täglichen Leben anwenden, können alle Potentiale ausgeschöpft werden. Die Methode kann sehr einfach auf Widerstände und Ablehnung stoßen; diesem muss mit den entsprechenden Motivierungsmaßnahmen vorgebeugt werden.

6.4.1 Widerstände und Ablehnung


- **Angst, überprüft zu werden:** Bei der Durchleuchtung und Dokumentierung der Prozesse zur CAD-Modell-Erzeugung können die Konstrukteure dem Irrglauben unterliegen, dass sie überprüft werden. Besonders die Nutzung der modellbezogenen Kennzahlen kann diese Angst verstärken.

- **Angst, ein Querulant zu sein:** Im Gegensatz zu den anderen Problemen haben diese Angst meistens die Mitarbeiter, die die Methode unterstützen, aber um sich herum Kollegen haben, die einen starken Widerstand leisten. Besonders bei einer starken Prozessänderung sind davon oft sehr junge Mitarbeiter betroffen.

- **Die Angst vor ungewissen Auswirkungen:** Viele Anwender werden Angst haben, welche Auswirkungen neue Methoden und vor allem neue Prozesse auf sie haben werden. Dies wird durch die Angst verstärkt, dass der Arbeitsplatz zur Disposition steht.

- **Widerstand gegen Neues:** Die neue Methode wird viele Prozesse in der Produktentstehung ändern oder anpassen. Dementsprechend werden viele Konstrukteure gezwungen sein, anders zu arbeiten und auch neue Techniken zu lernen.

- **Keine Akzeptanz der neuen Methode:** Die neue QM-Methode dient zwar der Verbesserung der CAD-Modell-Nutzung, aber hilft nicht unbedingt dem CAD-Erzeuger in seiner täglichen Arbeit. Das kann zu starkem Widerstand und zu geringer Akzeptanz führen.
Die Probleme können nur durch die entsprechende Konzipierung der Methode unter Berücksichtigung der psychologischen Faktoren und vor allem durch die Entwicklung von entsprechenden Motivierungsmaßnahmen gelöst werden.

6.4.2 Motivationsmaßnahmen


Modelle haben das Bedürfnis nach Anerkennung ihrer Leistung. Dabei spielt die Beeinflussung der Konstrukteure durch die Geschäftsführung die wichtigste Rolle. Einkommen und Motivation werden oftmals in Zusammenhang gesehen, jedoch stößt dieser Einflussfaktor schnell an seine Grenzen. Die Grenzen liegen in der Lohngerechtigkeit und der Wettbewerbsfähigkeit des Unternehmens. Folgende Faktoren sind zusammenfassend von größerer Bedeutung bei der Leistungsmotivation:

- Berufliche Aufstiegschancen
- Aufbau von Vertrauen zu den Erzeugern der CAD-Modelle
- soziale Anerkennung der Konstrukteure
- Betriebsverbundenheit und Gruppengefühl
- Sozialeistungen
- Motivation durch Führungsstil und Führungsverhalten
- sinnvolle Zielsetzungen zur Verbesserung der Modellqualität
- Schaffung von Problembewusstsein
- Regelmäßige Schulungen
7 Methodenvalidierung: Optimierung der 3D-CAD-Prozesskette bei einem Automobilzulieferer

7.1 Problemstellung

Das Anwendungsbeispiel der Methoden wurde im Laufe eines Kooperationsprojektes zwischen dem Institut und der Firma KeiperRecaro\(^{36}\) entwickelt und angewendet. Die Firma KeiperRecaro ist ein großer Automobil- und Flugzeugherstellerzulieferer, entwickelt und fertigt Metallkomponenten für Autositze, Sitzstrukturen und Komplett sitze (dargestellt in Abbildung 68). Ein weiterer großer Bereich besteht in der Entwicklung von Schaumteilen als Dienstleistung für große Automobilhersteller.

![Abbildung 68: Projektrelevante Produktpalette der Firma KeiperRecaro (Bilder in Anlehnung an [Kurt04])](image)


---

Die meisten 3D-CAD-Modelle können entweder nur mit einer intensiven Nachbearbeitung oder überhaupt nicht für die CAD-Anpassungs- und Variantenkonstruktionen benutzt werden.

Der Aufwand der CAD-Modell-Nutzer für die Modellnachbearbeitung für ihre Zwecke ist hoch.

Es ist nicht klar, wer die CAD-Modelle im Unternehmen nutzt. Weiterhin werden auch die Modelle von Zulieferern benutzt.

Alle CAD-Modelle müssen zu den entsprechenden externen Kunden (Automobil-OEMs) weitergegeben werden, die die Modellqualität mit Software-Checkern regelmäßig prüfen.


### 7.2 Methodenanwendung

Für beide Szenarien wurden im ersten Schritt unterschiedliche Qualitätsmodule ausgewählt. Tabelle 8 zeigt die Auswahl.

<table>
<thead>
<tr>
<th>Modul / Methode</th>
<th>Schaumteil</th>
<th>Sitzstrukturen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul A: CAD-Modellkundenidenti-</td>
<td>- (sind bekannt)</td>
<td>+</td>
</tr>
<tr>
<td>fizierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modul B: Anforderungsakquisition</td>
<td>- (sind bekannt)</td>
<td>+</td>
</tr>
<tr>
<td>Modul C: Anforderungsgewichtung</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Modul D: CAD-Modell-Pflichtenheft</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Modul E: Wechselwirkungen und Ver-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>träglichkeiten der Anforderungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modul F: Ableitung der Prüfmerkmale</td>
<td>+/- (vereinfacht)</td>
<td>+/- (vereinfacht)</td>
</tr>
<tr>
<td>Modul G: Modell-Design-Review</td>
<td>+/- (vereinfacht)</td>
<td>+/-(vereinfacht)</td>
</tr>
<tr>
<td>Modul H: Präventive Prozessüberwachung (CAD-Poka-Yoke)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Modul J: Modellierungsbegleitende Visualisierung und Vermittlung der Qualitätsinformationen</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Modul K: Modellendkontrolle</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Modul L: Messung der Weiterverwendungsqualität</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Modul M: Bewertung durch Qualitätskennzahlen</td>
<td>- (nicht notwendig)</td>
<td>- (nicht notwendig)</td>
</tr>
<tr>
<td>Modul N: Wiederverwendung der Qualitätsinformation</td>
<td>+</td>
<td>+ (zusammengelegt)</td>
</tr>
<tr>
<td>Modul O: Dokumentation und Vermittlung der Qualitätsinformation</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 8  Die für die Projekte ausgewählten Module

Es wurden fast alle Module ausgewählt bis auf die Methoden, die schon bekannte Informationen liefern würden. In weiteren Kapiteln folgt die Beschreibung des anspruchsvolleren und auch umfangreicheren Projektes: Sitzstrukturen.

Die Beschreibung der vorgeschlagenen und implementierten Erweiterungen für die IT-Architektur des Unternehmens, die prototypische Implementierung der QM-Datenbank wird für beide Projekte im Kapitel 7.2.5 beschrieben.

7.2.1  Phase der Qualitätsplanung

Schritt 1: Identifikation der Modellkunden; Anwendungsfall (Modul A)

Die Baugruppen der Strukturen werden an vielen Stellen im Unternehmen benutzt, so dass eine Kundenidentifikation notwendig war. Es wurde für die Kundenerfassung ein modellnutzungsorientierter Ansatz ausgewählt. Der Modelldurchlauf im PDM-System wurde analysiert und danach in einem umfassenden Workshop erörtert. Es hat sich gezeigt, dass einige Modellkunden unbekannt waren. So war der Datenaustauschvorgang mit dem externen Kunden früher nicht als wichtig befunden. In der Wirklichkeit aber war der Datenaustausch mit einer umfangreichen Nacharbeit betroffen (zwecks Know-how-Schutzes mussten z. B. die Entstehungsgeschichte und die Strukturen entfernt werden, was nur mit viel Aufwand möglich war). Abbildung 69 zeigt die Modellkunden bei Sitzstrukturen. Ein weiterer sehr wichtiger CAD-Modellkunde ist ein Packaging-Ingenieur, der im Allgemeinen ein DMU-Ingenieur ist, führt aber sehr wichtige Aufgaben für die Einbauuntersuchungen durch, was bei einem Sitz relevant ist. Zusätzlich zu der Analyse des PDM-Systems wurden mehrere Interviews mit Projektleitern (zusätzliche Anwendung des Top-Down-Ansatzes) durchgeführt, in denen
gezielt sowohl Modellkunden als auch ihre Anforderungen erfasst wurden. Diese Interviews und Befragungen fanden an mehreren Standorten statt. In weiteren Kapiteln werden nur einige ausgewählte Modellkunden behandelt, um den Rahmen der Arbeit nicht unnötig zu sprengen (im Projekt wurden aber alle Modellkunden mit allen Anforderungen abgearbeitet).

Abbildung 69: Anwendungsfall Sitzstrukturen


**Schritt 2: Erfassung der Modellanforderungen, Anforderungsgewichtung und Pflichtenheft (Module B, C, D)**

Für die Ableitung der Qualitätsanforderungen (Modul B) wurden sowohl Befragungen als auch zwei Workshops durchgeführt. Es wurden als Input aus dem vorhergegangenen Schritt die Kundenlisten übernommen. Wegen der Problemkomplexität wurden zu den Workshops auch Berater der Hersteller des Software-Systems eingeladen. Für die Aufteilung der Probleme in Anforderungen wurden für jedes Problem ein angepasstes Ishikawa-Diagramm erstellt und somit alle Einflüsse abgebildet. Erst durch diese strukturierte Darstellung konnten

Alle dieser Anforderungen gelten als Pflichtanforderungen, weil der CAD-Modellkunde als ein K.O.-Kunde ermittelt worden war. Im nächsten Schritt wurden diese Anforderungen in die Modellmerkmale übersetzt, woraus dann insgesamt ein Pflichtenheft resultierte.

Abbildung 70: Anforderungsanalyse des Modellkunden „Datenaustausch-Abteilung“

Tabelle 9 stellt für Sitzstrukturen eine Übersicht bzw. einen Ausschnitt aus einzelnen Anforderungen exemplarischer Modellkunden, übersetzt in CAD-Merkmale (Gewichtung wird im nächsten Schritt abgeleitet), dar. Insgesamt wurden sehr viele Anforderungen abgeleitet, so dass hier nicht alle präsentiert werden können. In den nächsten Schritten werden
von den aufgeführten Anforderungen Merkmale und Prüfkriterien abgeleitet. Die Anforderungen und Modellkunden werden nach einem einfachen Schlüssel gekennzeichnet, die erleichtert die Handhabung später.

<table>
<thead>
<tr>
<th>CAD-CAD-Modellkunde</th>
<th>Anforderung Merkmal</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1: Datenaustausch-Abteilung</td>
<td>K1A1: Konstruktionsgeschichte muss entfernt werden</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>K1A1M1: Nur Solids ohne Geschichte vorhanden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K1A2: Bemaßungen müssen assoziativ bleiben</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>K1A2M2: Nur assoziative Bemaßungen zugelassen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K1A3: Baugruppenstruktur muss erhalten bleiben</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>K1A3M3: <em>Datenaustausch-Baugruppe hat identische Struktur mit der Konstruktionsbaugruppe</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K1A4: Es dürfen keine CAD-Features übertragen werden</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>K1A5: Das Startmodell des OEM muss verwendet werden</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>K1A5M5: Startmodell-IDs muss übereinstimmen</td>
<td></td>
</tr>
<tr>
<td>K2: Packaging-Ingenieur</td>
<td>K2A1: Kinematik-Definition erfordert vordefinierte Linien als Gelenke</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>K2A1M1: Hilfslinien müssen in Einzelteilen an den Stellen der Gelenke vorhanden sein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K2A2: Alle Modelle müssen in der Einbaulage konstruiert werden</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>K2A2M2: Nullpunkt der Einzelteile muss mit dem Nullpunkt der Baugruppe übereinstimmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K2A3: Kinematik-Simulation muss auch bei Teileänderungen funktionieren.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>K2A3M3: <em>Mechanismen und Gelenke müssen funktionieren</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K2A4: Kinematik-Simulation muss auch ohne 3D-Teile schematisch funktionieren.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>K2A3M3: <em>Mechanismen und Gelenke müssen funktionieren</em></td>
<td></td>
</tr>
</tbody>
</table>
K3: FEM-Ingenieur

| K3A1: Detailformelemente müssen abschaltbar sein |
| K3A1M1: Detailformelemente müssen deaktivierbar bei der Erhaltung des Volumen sein |
| 1 |
| K3A2: Details sind als Detailformelemente zu modellieren |
| K3A2M2: Einzelheiten (Fasen, Rundungen etc.) sind als die entsprechenden CAD-Features vorhanden. |
| 3 |
| K3A3: CAD-Modell muss parametrik und Entstehungshistorie aufweisen |
| K3A3M3: CAD-Modell darf keine unparametrisierte Volumenkörper enthalten. |
| 3 |

Tabelle 9   Einige Anforderungen an die CAD-Modelle der Sitzstrukturen


Schritt 3: Umgang mit Wechselwirkungen (Modul E)

In diesem Schritt wurden die abgeleiteten Anforderungen auf ihre Verträglichkeit untersucht. Für die Visualisierung wurde eine Wechselbeziehungsmaatrix verwendet (Kapitel 5.3.5; hier um 90° rotiert in Abbildung 71 dargestellt). Es ist ganz klar zu erkennen, dass ein Merkmal sehr stark mit anderen Merkmalen im Konflikt steht: „Nur Solids ohne Konstruktionsgeschichte“. Dies hat die Tatsache als Grundlage, dass die meisten Merkmale durch unterschiedliche CAD-Features implementiert werden, was bei dieser Anforderung unmöglich wäre.
**K1A1M1:** Nur Solids ohne Geschichte vorhanden

| K1A2M2: Nur assoziative Bemaßungen zugelassen | 0 | 0 | 0 |
| K1A3M3: Datenaustausch-BG hat identische Struktur mit der Konstruktions-BG | 0 | 0 | 0 |
| K1A5M5: Startmodell-IDs muss übereinstimmen | 0 | 0 | 0 |

| K2A1M1: Hilfslinien müssen in Einzelteilen an den Stellen der Gelenke vorhanden sein. | 0 | 0 | 0 |
| K2A2M2: Nullpunkt der Einzelteile muss mit dem Nullpunkt der Baugruppe übereinstimmen. | 0 | 0 | 0 |
| K2A3M3: Mechanismen und Gelenke müssen funktionieren | 0 | 0 | 0 |

| K3A1M1: Detailformelemente müssen deaktivierbar bei der Erhaltung des Volumen sein | 0 | 0 | 0 |
| K3A2M2: Einzelheiten sind als die entsprechenden CAD-Features vorhanden. | 0 | 0 | 0 |
| K3A3M3: Modell darf keine unparametrisierten Volumenkörper enthalten. | 0 | 0 | 0 |

Abbildung 71: Verträglichkeitsmatrix für ausgewählte Modellmerkmale

Darüber hinaus bildet dieses Merkmal eine Pflichtanforderung, die zu einer für ein Unternehmen strategischen Anforderung gehört: CAD-Modell-Know-how-Schutz. Für die Lösung der Unverträglichkeit wurde die Möglichkeit „Erstellung mehrerer CAD-Modelle“ aus dem entsprechenden Qualitätsmodul gewählt (Kapitel 5.3.5). Man muss zwei alternativen Baugruppen erstellen, wobei die zweite Variante von der ersten assoziativ abgeleitet wird und für den Datenaustausch bestimmt ist. In der zweiten Baugruppe müssen alle Features manuell entfernt werden. Für die eindeutige Kennung wurde die Datenaustauschbaugruppe als solche im PDM-System gekennzeichnet, so dass die Konstruktions-Baugruppe das Master-Modell ist. Zusätzlich dazu mussten im Projekt noch weitere Lösungen entwickelt werden, damit diese Teilung nicht andere Merkmale verletzt (so muss zum Beispiel die Historie zwar entfernt werden, nicht aber die Kinematiken, die ein Teil der Historie sind). Deshalb wurde die Baugruppenstruktur grundsätzlich geändert und vor allem von der Kinematikdefinition entkoppelt, so dass Geometrie und Kinematiken unabhängig voneinander existieren können und nur miteinander verknüpft sind.

### 7.2.2 Phase der Qualitätslenkung

**Schritt 4: Ableitung der Prüfkriterien und Prüfprofile (Modul F)**

Im nächsten Schritt wurden die Prüfkriterien abgeleitet und schon für weitere Phasen alle notwendigen Profile zusammengestellt. Wie in den letzten Abschnitten erwähnt, wurden die meisten Merkmale identisch zu den Prüfkriterien des Werkzeuges Q-Checker konzipiert. Von den aufgeführten Merkmalen blieben nur einige, die noch übersetzt werden mussten.

- **K2A1M1:** Hilfslinien müssen in Einzelteilen an den Stellen der Gelenke vorhanden sein: Dieses Merkmal scheint auf den ersten Augenblick nur manuell prüfbar zu sein, weil in jedem CAD-Modell eine Vielzahl an Linien und Kurven vorliegt, die von dem Datenmodell nicht zu den Hilfslinien der Gelenke zu
unterscheiden sind. Es konnte aber erreicht werden, dass dieses Merkmal in ein Prüfkriterium plus eine organisatorische Anweisung übersetzt wurde: Es wurde beschlossen, alle solchen Hilfslinien genormt zu benennen, so dass ein Prüfprogramm das Vorhandensein auf diese Art benannten Linien prüfen kann.

- **K1A2M2: Datenaustausch- und Konstruktions-Baugruppe müssen identische Struktur haben.** Dies kann auch nicht sofort geprüft werden. Dafür wurde aber im Laufe des Projekts ein spezielles Startmodell (CAD-Modell-Vorlage) ausgearbeitet, so dass man prüfen konnte, ob die Struktur dieses Start-Modells vom Konstrukteur in der ersten Ebene geändert wurde.


**Schritt 5: Laufende Modellüberprüfung (Module G,H)**


Für die präventive Modellüberwachung und Visualisierung wurden im Projekt an einer Seite das Prüfprofil für die Konstruktion regelmäßig ausgeführt und auf der anderen Seite einige Prüfkriterien als neue CAD-Features in das CAD-System CATIA implementiert. Diese Features bilden über das eingebettete Wissensmodul Knowledge Ware einige kritische Prüfkriterien ab und informieren den Konstrukteur ständig in Form einer Ampel, ob er diese

Abbildung 72: Beispiel der eingebauten Tests in ein CAD-Modell

Der große Vorteil der Visualisierung in der Modellstruktur waren die laufende aktuelle Kontrolle der Modellqualität und eine rechtzeitige Benachrichtigung der Konstrukteure im Fehlerfall.

7.2.3 Phase der Qualitätsprüfung

In der Phase der Qualitätsprüfung wurden für das Testen die schon erwähnten Q-Checker-Testprofile gewählt. Im Anhang (Kapitel 10.1) ist ein Ausschnitt aus einem Testprofil zu finden. Die Ergebnisse der Testprofilläufe wurden statistisch ausgewertet und analysiert. Für die Messung der Weiterverwendungsqualität wurde die Zeit für die Modellnachbearbeitung gemessen.

7.2.4 Ergebnisse und Maßnahmen zur Qualitätsverbesserung; Kostenrechnung

Für die Aufnahme der Projektergebnisse zwecks kontinuierlicher Qualitätsverbesserung wurden unterschiedliche Maßnahmen durchgeführt.

Ein sehr großes Augenmerk wurde auf die Vermittlung der Informationen und Methoden in Form der Schulungen und Erstellung der E-Learning-Unterlagen gelegt. Dies stellt auch den wichtigen Teil des Qualitätstemplates dar. Vor der Erstellung der Unterlagen wurde von der Universität (ein anderes Teilprojekt der Kooperation, s. auch [AbBo03]) eine spezielle neue Vorlage entwickelt, die sowohl in einer neutralen Programmiersprache implementiert (für das Intranet) als auch für das PowerPoint-System entwickelt wurde. Abbildung 73 zeigt die Struktur der E-Learning-Vorlagen.
Abbildung 73: Struktur der E-Learning-Vorlage für die Vermittlung der erstellten Inhalte

Abbildung 74 zeigt einen Ausschnitt aus E-Learning-Unterlagen. Insgesamt wurden mehr als 200 Seiten an E-Learning-Kurse erstellt.

Abbildung 74: E-Learning-Unterlagen.

Abbildung 80 im Anhang zeigt die Ablage der E-Learning-Unterlagen in einem Groupware-System.
Ein weiterer Teil des Qualitätsstemplates waren die erstellten Vorlagen für die CAD-Modelle für die weiteren Produktentwicklungen. Abbildung 75 zeigt eine solche Vorlage, die gewährleistet, dass mehrere Merkmale im Baugruppen- und Kinematik-Bereich automatisch erfüllt werden. Auch an dieser Stelle wurden in die Vorlage mehrere Knowledge-Ware-Komponenten implementiert, zum Beispiel die automatische Berechnung der Masse etc. gewährleisten, was eine der wichtigen Anforderungen mehrerer Modellkunden war.

Abbildung 75: Das entworfene Startmodell gemäß aufgestellter Anforderungen

Ein weiteres wichtiges Werkzeug für die Wiederverwendung des Qualitätswissens sind die firmeninternen Normen. Es wurde eine Normreihe „KN15“ gestartet, die dann weltweit beim Unternehmen eingeführt wurde. Außer der Modellierung der hochqualitativen Modelle für die Firma Keiper spielt auch die Qualität der Lieferantenmodelle eine große Rolle, besonders weil einige Prozesse global in unterschiedlichen Ländern durchlaufen werden. Dafür wurde ein spezieller Qualitätskatalog (Qualitätstemplate für Zulieferer) entwickelt, der unterschiedliche Sammlungen der Startvorlagen, Checklisten und Prüfprofile für die Gewährleistung der Modellqualität enthält (s. auch Kapitel 10.2 im Anhang). Abbildung 76 zeigt einige Ausschnitte dieser Normen. Weitere Unterlagen sind im Anhang zu finden.

37 KN: Keiper-Norm
38 Diese Normreihe bei Fa. Keiper besteht aus fünf Teilen: Allgemeine Methodiken; Startmodelle; Zeichnungserstellung; methodische Einzelteilmodellierung; methodische Baugruppenmodellierung.
Als zentrales Element für die Information der Konstrukteure wurden ein vorhandenes Intranet-Portal erweitert und ein spezieller Bereich für die unterschiedliche Anleitungen und Qualitätsunterlagen eingerichtet. Im Anhang zeigt Abbildung 81 die Portaldarstellung.

**7.2.5 IT-Implementierung**

Für die Implementierung der Projektanforderungen wurden unterschiedliche Software-Bausteine benutzt. Damit keine neue Software eingeführt werden muss, hat man die einzelnen Bausteine aus der vorhandenen Software-Landschaft des Unternehmens ausgewählt (s. Abbildung 77). Folgende Bausteine wurden erweitert bzw. integriert:

**Lotus Notes:** Da das vorhandene PDM-System AGILE PLM keine zufriedenstellende Workflowfunktionalität anbietet, wurde auf die Funktionen des System Lotus Notes zugegriffen. Darüber hinaus wurde das System für die kontrollierte Ablage der E-Learning-Unterlagen benutzt sowie als Kommunikationsplattform. Es wurden spezielle virtuelle Projekträume eingerichtet, die u.a. mit Qualitätsmanagement-Inhalten gefüllt wurden.

**CAD-Portal im Intranet:** Das schon vorhandene CAD-Portal wurde stark erweitert, so dass die Anwender direkt und ohne lange Suchzeiten auf die ausgearbeiteten Unterlagen zugreifen können.

Abbildung 78 zeigt die Entwurfsoberfläche der in die Datenbank implementierten Tabellen mit einigen ausgewählten Attributen und vor allem die Beziehungen zwischen den einzelnen Tabellen. Mit diesem Datenmodell wurden die meisten Daten abgebildet und gepflegt. Im Rahmen der Arbeit wurde die Datenbank testweise betrieben, über den eventuellen produktiven Einsatz wird später entschieden.
Abbildung 78: Entwurfsdarstellung der Tabellen

Abbildung 79: Prototypische Implementierung des Quality Portals

7.3 Kritische Bewertung der Ergebnisse und Erfüllungsgrad der Anforderungen

Am Ende des Projektes wurde eine vereinfachte Kostenrechnung durchgeführt.

Folgende Kosten entstanden in diesem Projekt:\(^{39}\):

- Vorbereitung des Qualitäts-Templates (Startvorlage für das CAD-System, vordefinierte Systemeinstellungen): \(0,5\) PT
- Erfassung der Anforderungen seitens externer Kunden (telefonisches Gespräch): \(0,25\) PT
- Mehraufwand für die Implementierung der Modellmermale: \(2\) PT
- Mehraufwand für die Workshops und Interviews: \(5\) PT
- Mehraufwand für die anschließende Anpassung des Qualitäts-Templates und der Startvorlage: \(0,25\) PT
- Zusätzliche Methoden Schulung in Freiformflächenmodellierung: \(1\) PT

---

\(^{39}\) Alle Werte dargestellt in Manntagen (7 Stunden = 1 MT) und gerundet jeweils auf 0,25 Manntage
Folgender Nutzen kann in dem optimalen Fall generiert werden:

- **Zeitersparnis wegen Vermeidung der Neumodellierung und Nutzung eines vorhandenen Teils**: 5 PT
- **Zeitersparnis wegen schneller Kinematik-Anpassung bei Designänderung für den externen Kunden (Gesamtaufwand früher wegen Design-Änderungen seitens Kunden: 10 PT; aktuell: 4 PT)**: 6 PT
- **Zeitersparnis wegen möglicher schneller Modelländerung bei internen Iterationen (Gesamtaufwand früher: 11 PT; aktuell: 4PT)**: 7 PT

Somit stehen in dieser überschlägigen Rechnung den 9 Personentagen Mehraufwand 18 Personentagen Nutzen gegenüber, was einer Ersparnis von 9 Personentagen entspricht.

Im Rahmen der zwei beschriebenen Projekte bei dem Automobilzulieferer wurden zwei Produktentwicklungen begleitet, Methoden für das Qualitätsmanagement der CAD-Methode angewendet und die Ergebnisse überprüft. Es hat sich gezeigt, dass schon bei dem ersten Einsatz der Methode große Zeiteinsparungen für die gesamte Produktentwicklung entstehen. Dem Erfolg steht ein Aufwand gegenüber, der auf jeden Fall geringer als der Nutzen ist. Darüber hinaus waren diese Projekte die ersten QM-Projekte für CAD-Modelle, so dass in weiteren Projekten erheblich geringere QM-bezogene Aufwände zu erwarten sind.


Nach der Durchführung des Projektes und vor allem der Ausarbeitung der Methodik kann die Erfüllung der Anforderungen an die Methodik (s. Kapitel 3) bewertet werden.

Tabelle 10 stellt den Grad der Erfüllung der Methodenanforderung dar:

<table>
<thead>
<tr>
<th>Anforderung</th>
<th>Erfüllung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: Nachweisbare Reduzierung der Modellnachbearbeitungszeiten bei Modellkunden</td>
<td></td>
</tr>
<tr>
<td>A2: Verbesserung der numerischen und organisatorischen Qualität</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>A3: Identifikation der Modellkunden</td>
<td></td>
</tr>
<tr>
<td>A4: Akquisition, Verwaltung und Visualisierung der Qualitätsanforderungen</td>
<td></td>
</tr>
<tr>
<td>A5: Verwendung von Qualitätsmanagementmethoden</td>
<td></td>
</tr>
<tr>
<td>A6: Reproduzierbarkeit (Robustheit) der Ergebnisse</td>
<td></td>
</tr>
<tr>
<td>A7: Quantifizierbarkeit der Ergebnisse</td>
<td></td>
</tr>
<tr>
<td>A8: Integration in die virtuelle Produktentwicklung und Konstruktionsmethodik</td>
<td></td>
</tr>
<tr>
<td>A9: Gewährleistung des Anwenderbezugs</td>
<td></td>
</tr>
<tr>
<td>A10: Verständlichkeit</td>
<td></td>
</tr>
<tr>
<td>A11: Produktneutrale Formulierung</td>
<td></td>
</tr>
<tr>
<td>A12: Einbeziehung vorhandener IT-Engineering-Werkzeuge</td>
<td></td>
</tr>
<tr>
<td>A13: Aufruf aus operativen technischen Systemen</td>
<td></td>
</tr>
<tr>
<td>A14: Trennung zwischen der Präsentation und der Datenbasis</td>
<td></td>
</tr>
<tr>
<td>A15: Nutzung der neutralen Visualisierungstechniken</td>
<td></td>
</tr>
<tr>
<td>A16: Ein Teil der Anwendung als Agent / Wizard</td>
<td></td>
</tr>
<tr>
<td>A17: Hohe Anwenderfreundlichkeit und Ergonomie</td>
<td></td>
</tr>
<tr>
<td>A18: Reduzierung der gesamten Produktentwicklungskosten</td>
<td></td>
</tr>
<tr>
<td>A19: Geringe Anfangsinvestitionen</td>
<td></td>
</tr>
<tr>
<td>A20: Controlling-Konzept und Kennzahlen</td>
<td></td>
</tr>
<tr>
<td>A21: Steigerung der Motivation bei Anwendern</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 10  Grad der Anforderungserfüllung

<table>
<thead>
<tr>
<th>A22: Keine Einschränkung der Kreativität bei Anwendern</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐: keine Erfüllung; ☐: geringe Erfüllung; ☐: mittlere Erfüllung; ☐: hohe Erfüllung; ☐: volle Erfüllung</td>
</tr>
</tbody>
</table>
8 Zusammenfassung und Ausblick


Im Kapitel 5 wurde das neu entwickelte Konzept, das sich an die vier Phasen des Qualitätsmanagements, Planung, Lenkung, Prüfung und Verbesserung, anlehnt, näher beschrieben. Das Ziel ist dabei, einen Methodenbaukasten zu entwickeln, so dass in konkreten
Fällen aus den so genannten Qualitätsmodulen dieses Baukastens eine Methodik aufgebaut werden kann. Dazu sind u.a. die bereits existierenden Qualitätsmethoden zu modularisieren (die Ansätze von Ehrleinspiel, Lesmeister und Hoffmann werden erweitert und ergänzt). Auf diese Art und Weise entsteht eine Vielzahl von Modulen für jede Phase, die durch definierte Eingangs- und Ausgangsgrößen festgelegt sind. Darunter sind sowohl Methoden zur Handhabung der so genannten Modellkunden und ihrer Anforderungen als auch zur Visualisierung der Qualitätsinformationen zu verstehen.


Mögliche Schritte für die weitere Entwicklung der Konzepte und ihre Implementierung lassen sich grob in zwei große Gruppen einteilen:

- **Wissenschaftliche Weiterentwicklung:** Die erarbeiteten Ansätze können in unterschiedliche Forschungsrichtungen erweitert werden:
  - Besonders für die effektive Nutzung der entwickelten Methode wäre eine Integration in die bestehenden Managementwerkzeuge notwendig. So könnten weitere Kennzahlssysteme entwickelt werden oder auch diese in vorhandene
Methoden, wie z. B. **Balanced Scorecard**, integriert werden. Besonders interessant wäre dabei die Integration in die Six-Sigma-Methode, die schon jetzt flächendeckend in vielen Firmen zum Einsatz kommt und zukünftig noch mehr erweitert werden kann.


Weitere Entwicklungsrichtungen des entwickelten Ansatzes werden sicherlich entstehen, wenn er routinemäßig bei einigen Unternehmen eingesetzt wird. Es wäre zum Beispiel sinnvoll, spezielle Qualitätstemplates für einige Branchen oder einige CAD-Modellkunden zentral bei einem Anbieter in Form eines Katalogs zu erstellen, so dass sie über Softwarehersteller oder Dienstleistungsunternehmen bezogen werden können. Dies könnte dazu beitragen, die Kosten der Einführungsphase signifikant zu senken.
9 Literaturverzeichnis


[DaKö06] Danjou, St.; Köhler, P.: Herausforderungen an das Konstruktionsmanagement. In: Konstruktion, Oktober 2006

[Dick05] Dickin, P.: Using CADCAM to speed the design and manufacture of castings. In: Foundry Trade Journal, ISSN 0015-9042, Band 179, Heft 3624, 2005


[Hann00] Institut für Qualitätssicherung Universität Hannover: Skript zur Vorlesung „Grundlagen des Qualitätsmanagements“. Hannover, 2000


[Lins05] Linß, G: Qualitätsmanagement für Ingenieure. München; Wien: Carl Hanser Verlag, 2005


[Plat05] Plato AG: Im Fluss - wie Toyota von DRBFM profitiert. In: QZ Qualität und Zuverlässigkeit - 2005, Ausgabe 4


[ProS05] ProSTEP iViP Association: Projektstudie zur Bewertung des Datenformats JT. Darmstadt: ProSTEP iViP Verein, 2005

[ProS05b] Internetseite 2006: http://www.prostep.org/


[VDA 4955] VDA-Empfehlung 4955/2 „Umfang und Qualität von CAD/CAM-Daten“. Frankfurt am Main: Verband der Automobilindustrie e.V. (VDA), 1999


[VDMA02] VDMA: Leitfaden für die Anforderungsanalyse. Frankfurt am Main: VDMA Verlag GmbH, 2002


10 Anhang

10.1 Auszug aus dem erstellten Prüfprofil

1.1 Prüfkriterien

1.1.1 CATDUAV5 Priorität 1, 2, 3

1.1.2 KEIPER-Startmodell
Bei KEIPER-Projekten werden nur Daten auf Basis des KEIPER-Startmodells und der KEIPER-Projektumgebung akzeptieren.
In Kundenprojekten gilt immer das aktuelle Kunden-Startmodell des Projektes (OEM).
Das KEIPER-Startmodell sowie die Kundenstartmodelle unterliegen dem Änderungsdienst und werden versioniert und freigegeben.

1.1.3 Aktueller Stand der Produkte und Parts
Die Bestandteile eines CATProducts und eines CATParts müssen im abgespeicherten Zustand immer aktualisiert (up-to-date) sein.

1.1.4 Einpassung der Darstellung auf dem Bildschirm
Die Darstellung des Modells muss in das Bildschirmfenster eingepasst (d. h. zentriert und auf eine entsprechende Modellgröße gebracht) werden.

Abbildung 1: falsche Abspeicherung  
Abbildung 2: richtige Abspeicherung

Kriterium: Batch-Kriterien - CATDUAV5 Priorität

Kriterium: Methodik – CATPart – CATPart-Strukturbaum entspricht Referenzmodell

Kriterium: Normen und Standards – Abspeicherzustand – Produkt-/Part-Update

Kriterium: Preprocessing – Fit All In
10.2 Auszug aus der Checkliste für die externen Modelllieferanten

1 Projektcheckliste für einen externen Partner
Diese Checkliste stellt die wichtigen Meilensteine, Anforderungen und Vorgaben in einer komprimierten Form dar. Sie ist kein Pflichtdokument und dient erstens dem Informationszweck und zweitens für die einfachere Norm-Handhabung bei dem externen Partner. Es wird jedem Partner empfohlen, diese Checkliste bei jedem Projekt schrittweise durchzugehen.

<table>
<thead>
<tr>
<th>Erledigt</th>
<th>Vorgang</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>Allgemeine Vereinbarungen und Vorgaben mit KEIPER besprochen</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>Projektbezogenen Ansprechpartner für den Datenaustausch bei KEIPER festgelegt</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>Projektbezogene Vereinbarungen und Vorgaben mit KEIPER besprochen</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>KEIPER-CATIA-Version festgelegt und installiert</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>KEIPER-CATIA-ServicePack festgelegt und installiert</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>U.U spezifische HotFixes installiert</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>Alle Bauteile mit CATDUA geprüft</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>Alle Bauteile mit Q-Checker (mit dem KEIPER-Prüfprofil) geprüft</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>KEIPER-Startmodell verwendet</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>Teile in der abgesprochenen Lage modelliert (Einbau- oder Nullage)</td>
<td></td>
</tr>
</tbody>
</table>
Abbildung 80 Ablage der E-Learning- und sonstiger QM-Unterlagen im Groupware-Portal

Abbildung 81 CAD-Portal
11 Abbildungsverzeichnis

Abbildung 1 : Anteil der Firmen, die CAD-Daten für unterschiedliche Aufgaben in der Produktentstehung nutzen [Tech01] ................................................................. 1
Abbildung 2 : Vision eines zentralen, neutralen digitalen Produktmodells ................. 2
Abbildung 3 : Ansatz der Hersteller integrierter CAx-Systeme ........................................ 2
Abbildung 4 : Aktueller Zustand der CAD-Modell-Weiterverwendung in der Produktentstehung ........................................................................................................ 3
Abbildung 5 : Abgrenzung der Arbeit gegenüber anderen Methoden .............................. 4
Abbildung 6 : Gliederung der Dissertation ...................................................................... 6
Abbildung 7 : Lebenslauf von Produkten und CAD-Modellen ........................................ 8
Abbildung 8 : Entwicklung der CAD-Geometriemodelle .................................................. 12
Abbildung 9 : Beispiel eines Features (Bohrung) in dem 3D-CAD-System CATIA V.5 .... 15
Abbildung 10 : Beispiel der Wissenseingabe im CAD-Modell (KBE in NX4 von UGS) .... 17
Abbildung 11 : Semantik des Begriffes „3D-CAD-Modell“ ................................................. 18
Abbildung 12 : Inhalte eines 3D-CAD-Modells ................................................................. 19
Abbildung 13 : Zugriffsstruktur auf JT-Dateien .................................................................. 22
Abbildung 14 : Klassifizierung der CAD-Modellkunden nach der Art der Nutzung von CAD-Modellen ........................................................................................................ 23
Abbildung 15 : Einige CAD-Modellkunden aus dem CAD-Umfeld .................................. 25
Abbildung 16 : Qualitätsbegriff im Laufe der Zeit (in Anlehnung an [Sand01], [Hann00]) 30
Abbildung 17 : Duale Rolle als CAD-Modellkunde und Modelllieferant (Quelle der Bilder: Dassault) .......................................................... 32
Abbildung 18 : Verschiedene Gruppen der Modellqualitätsanforderungen ...................... 35
Abbildung 19 : Entwicklung des Qualitätsmanagements (in Anlehnung an [Hann00])........ 38
Abbildung 20 : Qualitätskreise (in Anlehnung an [Hann00]) ............................................ 40
Abbildung 21 : Ausgewählte QM-Methoden (in Anlehnung an [HeTB99]) ......................... 42
Abbildung 22 : Formblatt für die Durchführung einer FMEA .............................................. 43
Abbildung 23 : Exemplarische Darstellung des QFD .......................................................... 45
Abbildung 24 : Phasen des Benchmarkings (in Anlehnung an [KaBr02]) ......................... 47
Abbildung 25 : Einteilung in Klassen bei der ABC-Analyse .............................................. 49
Abbildung 26 : Aufbau eines Ishikawa-Diagramms (nach [KaBr03]) ................................. 49
Abbildung 27 : Beispiel einer Qualitätsregelkarte .............................................................. 50
Abbildung 28 : Aufbau des Anforderungskataloges ............................................................ 53
Abbildung 29 : Programmoberfläche des Moduls Check-Mate in NX4 .............................. 63
Abbildung 30 : Programmoberfläche von Q-CHECKER...................................................... 65
Abbildung 31 : Aufbau eines standardisierten 3D-CAD-Startmodells in dem CAD-System CATIA V.5 ....................................................................................................... 68
Abbildung 32 : Konzeptbausteine des Qualitätsmanagements der CAD-Modelle............ 71
Abbildung 33 : Modularisierung und Kombinierung der Methoden........................................ 73
Abbildung 34 : Modularisierung der QM-Methoden (in Anlehnung an [Ehrl03, Lesm01]). 75
Abbildung 35 : Qualitätsmodule der Phase der CAD-Qualitätsplanung ................................ 77
Abbildung 36 : Darstellung von Use Case – Elementen in der Methodik.......................... 80
Abbildung 37 : Beispiel eines Use Case – Diagramms für ein Projekt.............................. 81
Abbildung 38 : Ablauf der Anforderungserfassung mit dem elektronischen Fragebogen . 83
Abbildung 39 : Angepasstes Ishikawa-Diagramm............................................................. 86
Abbildung 40 : Ablauf der Anforderungs-Gewichtung ....................................................... 89
Abbildung 41 : Erstellung des Pflichtenheftes im Bottom-Up-Ansatz............................... 91
Abbildung 42 : Erstellung des Pflichtenheftes nach dem Top-Down-Ansatz ......................... 92
Abbildung 43 : Beispiel einer Wechselbeziehungsmatrix .................................................. 95
Abbildung 44 : Beispiel der assoziativen Erzeugung der alternativen Modelle................. 96
Abbildung 45 : Bausteine der Phase CAD-Modellqualitätslenkung .................................... 97
Abbildung 46 : Beispiel der Ableitung eines Prüfkriteriums.............................................. 98
Abbildung 47 : Zusammensetzung eines Prüfprofils in Form eines UML-Klassen-Diagramms........................................................................................................... 100
Abbildung 48 : Inhaltliche Anforderungen an CAD-Modell-Design-Reviews ...................... 101
Abbildung 50 : CAD-Modell-DesignReview in Form einer elektronischen Mappe............. 103
Abbildung 51 : Zeitliche Abfolge der CAD-Poka-Yoke-Mechanismen.................................. 106
Abbildung 52 : Unterschiedliche Sichtfilter auf die Qualitätsinformationen...................... 108
Abbildung 53 : Prototypische Realisierung der CAD-Qualitäts-Features in NX3 .............. 109
Abbildung 54 : Prototypische Visualisierung der Qualitätsinformationen am Beispiel von NX3............................................................................................................. 110
Abbildung 55 : Module der Phase Modellqualitätsprüfung................................................ 111
Abbildung 56 : PDM-Workflow für die Freigabe der CAD-Modelle ..................................... 114
Abbildung 57 : Beispielhafte Verteilung der Zeit bis zum Anfang der wertbringenden Modellbearbeitung...................................................................................... 117
Abbildung 58 : Erweiterung der Stati in der Produktentstehung ................................................................. 118
Abbildung 59 : Ampelsystem .................................................................................................................................................. 121
Abbildung 60 : Konzept des Qualitäts-Templates ................................................................................................................ 124
Abbildung 61 : Vermittlungsmethoden ................................................................................................................................. 125
Abbildung 62 : Beispiel der Modulauswahl .......................................................................................................................... 127
Abbildung 63 : Übersicht der IT-Architektur ........................................................................................................................... 130
Abbildung 64 : Grobes Datenmodell zum Qualitätsmanagement der CAD-Modelle ............................................................ 133
Abbildung 65 : Grundlagen der Kosten-Nutzen-Analyse des QM für CAD-Modelle (in Anlehnung an [EiSt01]) ......................................................................................................................................................... 135
Abbildung 66 : Break-Even-Point des Qualitätsmanagements ........................................................................................................ 138
Abbildung 67 : Psychologisches Spannungsfeld des Qualitätsmanagements für CAD-Modelle (in Anlehnung an [Gerko4]) ................................................................................................................................. 139
Abbildung 68 : Projektrelevante Produktpalette der Firma KeiperRecaro (Bilder in Anlehnung an [Kurt04]) .......................................................................................................................................................... 143
Abbildung 69 : Anwendungsfall Sitzstrukturen .......................................................................................................................... 146
Abbildung 70 : Anforderungsanalyse des Modellkunden „Datenaustausch-Abteilung“ .......................................................... 147
Abbildung 71 : Verträglichkeitsmatrix für ausgewählte Modellmerkmale .................................................................................. 150
Abbildung 72 : Beispiel der eingebauten Tests in ein CAD-Modell ........................................................................................ 152
Abbildung 73 : Struktur der E-Learning-Vorlage für die Vermittlung der erstellten Inhalte .............................................................................................................................................................................. 153
Abbildung 74 : E-Learning-Unterlagen ........................................................................................................................................... 153
Abbildung 75 : Das entworfene Startmodell gemäß aufgestellter Anforderungen ................................................................ 154
Abbildung 76 : Beispiele einiger entworfener Werksnormen ........................................................................................................ 155
Abbildung 77 : IT-Systemarchitektur .......................................................................................................................................... 156
Abbildung 78 : Entwurfsdarstellung der Tabellen .......................................................................................................................... 157
Abbildung 79 : Prototypische Implementierung des Quality Portals .............................................................................................. 158
Abbildung 80 : Ablage der E-Learning- und sonstiger QM-Unterlagen im Groupware-Portal ........................................................................................................................................................................ 176
Abbildung 81 : CAD-Portal ..................................................................................................................................................... 176
### 12 Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beispiele einiger CAD-Modellkunden</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Bewertung der recherchierten Ansätze</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Bestandteile eines Qualitätsmoduls</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Elementare Hilfswerkzeuge der Qualitätsmodule</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>Kosten des QM für CAD-Modelle</td>
<td>136</td>
</tr>
<tr>
<td>6</td>
<td>Nutzen des QM für CAD-Modelle</td>
<td>137</td>
</tr>
<tr>
<td>7</td>
<td>Einführungsrisiken der Methode</td>
<td>139</td>
</tr>
<tr>
<td>8</td>
<td>Die für die Projekte ausgewählten Module</td>
<td>145</td>
</tr>
<tr>
<td>9</td>
<td>Einige Anforderungen an die CAD-Modelle der Sitzstrukturen</td>
<td>149</td>
</tr>
<tr>
<td>10</td>
<td>Grad der Anforderungserfüllung</td>
<td>161</td>
</tr>
</tbody>
</table>
## Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-REP</td>
<td>Boundary Representation</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer Aided Engineering</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer Aided Manufacturing</td>
</tr>
<tr>
<td>CAQ</td>
<td>Computer Aided Quality assurance</td>
</tr>
<tr>
<td>CAx</td>
<td>Computer Aided X (X als Platzhalter)</td>
</tr>
<tr>
<td>CORBA</td>
<td>Common Object Request Broker Architecture</td>
</tr>
<tr>
<td>CSCW</td>
<td>Computer Supported Cooperative Work</td>
</tr>
<tr>
<td>CSG</td>
<td>Constructive Solid Geometry</td>
</tr>
<tr>
<td>DB</td>
<td>Datenbank</td>
</tr>
<tr>
<td>DBRFM</td>
<td>Design Review Based on Failure Modes</td>
</tr>
<tr>
<td>DMU</td>
<td>Digital Mock-Up</td>
</tr>
<tr>
<td>EDM</td>
<td>Electronic Data Management</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Elemente Methode</td>
</tr>
<tr>
<td>FMEA</td>
<td>Fehlermöglichkeits- und Einflussanalyse</td>
</tr>
<tr>
<td>FTA</td>
<td>Fehlerbaumanalyse</td>
</tr>
<tr>
<td>IGES</td>
<td>Initial Graphics Exchange Specification</td>
</tr>
<tr>
<td>KBE</td>
<td>Knowledge-based Engineering</td>
</tr>
<tr>
<td>NC</td>
<td>Numerical Control</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>PDM</td>
<td>Product Data Management</td>
</tr>
<tr>
<td>PLM</td>
<td>Product Lifecycle Management</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality Function Deployment</td>
</tr>
<tr>
<td>QM</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>RPZ</td>
<td>Risiko-Prioritätszahl</td>
</tr>
<tr>
<td>STEP</td>
<td>Standard for the Exchange of Product Model Data</td>
</tr>
<tr>
<td>TPD</td>
<td>Technische Produktdokumentation</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>VDA</td>
<td>Verband der Automobilindustrie</td>
</tr>
<tr>
<td>VDI</td>
<td>Verein Deutscher Ingenieure</td>
</tr>
<tr>
<td>VDMA</td>
<td>Verein Deutscher Maschinen- und Anlagentechniker</td>
</tr>
<tr>
<td>VPE</td>
<td>Virtuelle Produktentwicklung</td>
</tr>
</tbody>
</table>
Lebenslauf

Name: Alexander Stekolschik
Geburtsdatum und -Ort: 19.01.1976 in Magnitogorsk / Russland
Familienstand: verheiratet seit 04.04.2000

Aus- und Weiterbildung

09/1983-06/1993 Naturwissenschaftliches Lyzeum, Magnitogorsk Russland (Abschluss: allgemeine Hochschulreife)
09/1993-07/1995 Studium der Industrieelektronik an der Staatl. Akademie für Bergbau- und Hüttenindustrie, Magnitogorsk (anerkannt als deutscher Abitur)
10/1996 – 03/2001 Studium des Allgemeinen Maschinenbau an der Universität-GH Essen (Vertiefungen: Konstruktionstechnik, Ingenieurinformatik )
Abschluss: Diplom-Ingenieur
06/1998 Verleihung des Preises für hervorragende Leistungen beim Studium an der Universität-GH Essen

Berufstätigkeit

09/1998-03/2001 Studentische Hilfskraft an dem Institut für Kunststofftechnik und Kunststoffmaschinen an der Universität-GH Essen
05/2001-09/2005 Wissenschaftlicher Mitarbeiter am Lehrstuhl für Maschinenbauinformatik (ITM), Institut für Konstruktionstechnik, Ruhr-Universität Bochum
Seit 10/2005 Projektmanager bei der Siemens AG,
Fachbereich Power Generation, Division Industrial Applications

Bochum, im August 2007