Poröse Silicate mit hierarchischer Porenstruktur:
Synthese von mikro-/mesoporösen MCM-41 und MCM-48 Materialien aus zeolithischen Baueinheiten des MFI-Gerüststrukturtyps

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

vorgelegt von
Dipl. Ing. Markus Reichinger
aus Stuttgart

der Fakultät für Chemie
an der Ruhr-Universität Bochum

2007
Inhaltsverzeichnis

Danksagung..5

Abkürzungsverzeichnis..6

1. Einleitung ..8
 1.1 Geordnete Mesoporöse Materialien..8
 1.1.1 Hydrothermale Nachbehandlung von MCM-41/MCM-48........................11
 1.2 Zeolithe ...12
 1.3 Mikro-/mesoporöse Materialien...13

2. Aufgabenstellung und Zielsetzung ..16

3. Überblick über die verwendeten Charakterisierungsmethoden..................21
 3.1 Röntgenbeugung (XRD)..21
 3.2 Transmissionselektronenmikroskopie (TEM)..22
 3.3 Festkörper-NMR..22
 3.4 N$_2$-Physisorption / Argon-Physisorption..23
 3.5 Thermoanalyse ..23
 3.6 Atom-Absorption-Spectroscopy (AAS) / Inductively-Coupled-Plasma Optical-Emission-Spectroscopy (ICP-OES)..24
 3.7 IR-Spektroskopie..24
 3.8 UV-Vis-Spektroskopie..25
 3.9 X-Ray Absorption Spectroscopy (XAS)..25
 3.10 Katalytische Testreaktion...25

4. Experimenteller Teil ...27
 4.1 Synthese von rein mesoporösem MCM-41...27
 4.2 Synthese von rein mesoporösem MCM-48..27
 4.3 Synthese von mikro-/mesoporösen Materialien...27
 4.3.1 Beschreibung der Synthese der mikro-/mesoporösen Materialien......27
 4.3.2 Synthese von mm-MCM-41(Silicalit-1) und mm-MCM-48(Silicalit-1) 28
 4.3.3 Synthese von mm-MCM-41(TS-1) und mm-MCM-48(TS-1)..............29
 4.3.4 Synthese von mm-MCM-41(ZSM-5)..30
4.4 Hydrothermale Nachbehandlung von rein mesoporösem MCM-41/MCM-48..........................31
4.5 Hydrothermale Nachbehandlung von mikro-/mesoporösem MCM-41/MCM-48..............31
4.6 Charakterisierungsverfahren..31
 4.6.1 Röntgenbeugung (XRD)..31
 4.6.2 Transmissionselektronenmikroskopie (TEM)...32
 4.6.3 Festkörper-NMR..32
 4.6.4 N$_2$-Physisorption/Argon-Physisorption...32
 4.6.5 Thermoanalyse...32
 4.6.6 Atom-Absorption-Spektroscopy (AAS) / Inductively-Coupled-Plasma Optical-Emission-
 Spectroscopy (ICP-OES)...33
 4.6.7 IR-Spektroskopie..33
 4.6.8 UV-Vis-Spektroskopie..33
 4.6.9 X-Ray Absorption Spectroscopy (XAS)...33
 4.6.10 Katalytische Testreaktion...34
5. Ergebnisse und Diskussion...35
 5.1 Hydrothermale Nachbehandlung von rein mesoporösem MCM-41/MCM-48...............35
 5.1.1 Hydrothermale Nachbehandlung von rein mesoporösem MCM-41.......................35
 5.1.1.1 XRD..35
 5.1.1.2 Thermoanalyse..41
 5.1.1.3 N$_2$-Physisorption...43
 5.1.2 Hydrothermale Nachbehandlung von rein mesoporösem MCM-48.......................52
 5.1.2.1 XRD..52
 5.1.2.2 Thermoanalyse..56
 5.1.2.3 N$_2$-Physisorption...60
 5.1.2.4 29Si-MAS-NMR..64
 5.1.3 Zusammenfassung...66
 5.2 Charakterisierung von mm-MCM-41(Silicalit-1)..69
 5.2.1 XRD..69
 5.2.2 N$_2$-Physisorption/Argon-Physisorption...74
 5.2.3 Thermoanalyse..79
 5.2.4 IR-Spektroskopie..83
 5.2.5 29Si-MAS-NMR...84
 5.2.6 TEM..84
5.2.6 Zusammenfassung..86
5.3 Charakterisierung von mm-MCM-48(Silicalit-1)..88
 5.3.1 XRD...88
5.4 Charakterisierung von mm-MCM-41(TS-1)..93
 5.4.1 XRD...93
 5.4.2 N₂-Physisorption/ Argon-Physisorption..99
 5.4.3 Thermoanalyse...104
 5.4.4 AAS/ICP...106
 5.4.5 UV-Vis-Spektroskopie...107
 5.4.6 IR-Spektroskopie..109
 5.4.7 XAS..112
 5.4.8 ^29Si-MAS-NMR..117
 5.4.9 TEM...117
 5.4.10 Untersuchung der Kristallkeimlösung von mm-MCM-41(TS-1).................................118
 5.4.11 Katalytische Testreaktion...120
 5.4.11.1 Epoxidierung in Methanol...120
 5.4.11.2 Epoxidierung in Decan..122
 5.4.12 Zusammenfassung..124
5.5 Charakterisierung von mm-MCM-48(TS-1)..127
 5.5.1 XRD...127
5.6 Charakterisierung von mm-MCM-41(ZSM-5)..130
 5.6.1 Charakterisierung von mm-MCM-41(ZSM-5) (Synthesemethode 1)..........................130
 5.6.1.1 XRD...130
 5.6.1.2 Thermoanalyse..133
 5.6.1.3 AAS..134
 5.6.1.4 ^27Al-MAS-NMR..135
 5.6.2 Charakterisierung von mm-MCM-41(ZSM-5) (Synthesemethode 2)..........................139
 5.6.2.1 XRD...139
 5.6.2.2 Thermoanalyse..141
 5.6.2.3 AAS..142
 5.6.2.4 ^27Al-MAS-NMR..143
 5.6.3 Charakterisierung von mm-MCM-41(ZSM-5) (Synthesemethode 3)..........................145
 5.6.3.1 XRD...146
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.3.2 Thermoanalyse</td>
<td>147</td>
</tr>
<tr>
<td>5.6.3.3 AAS</td>
<td>149</td>
</tr>
<tr>
<td>5.6.3.4 27Al-MAS-NMR</td>
<td>149</td>
</tr>
<tr>
<td>5.6.4 Charakterisierung von mm-MCM-41(ZSM-5) (Synthesemethode 4)</td>
<td>151</td>
</tr>
<tr>
<td>5.6.4.1 XRD</td>
<td>151</td>
</tr>
<tr>
<td>5.6.4.2 Thermoanalyse</td>
<td>154</td>
</tr>
<tr>
<td>5.6.4.3 AAS</td>
<td>156</td>
</tr>
<tr>
<td>5.6.4.4 27Al-MAS-NMR</td>
<td>156</td>
</tr>
<tr>
<td>5.6.5 Zusammenfassung</td>
<td>159</td>
</tr>
<tr>
<td>6. Zusammenfassung</td>
<td>161</td>
</tr>
<tr>
<td>7. Literaturverzeichnis</td>
<td>166</td>
</tr>
<tr>
<td>A Anhang</td>
<td>169</td>
</tr>
</tbody>
</table>
Danksagung

Herrn Prof. Gies und Herrn Grüner danke ich für die interessante und vielseitige Aufgabenstellung.
Insbesondere danke ich Herrn Prof. Gies für die wissenschaftliche Betreuung und seine kritischen Denkanstöße.
Mein Dank gilt allen Mitarbeitern des Lehrstuhls für Technische Chemie, sowie den Mitarbeitern des Fachbereichs Mineralogie für ihre Unterstützung. Namentlich hervorheben möchte ich Herrn Dr. Bernd Maler für seine ständige Bereitschaft zu wissenschaftlichen Diskussionen und Hilfestellung in allen Lebenslagen. Ich bedanke mich bei Frau Astrid Michele und Frau Kirsten Keppler für die AAS / ICP Messungen, bei Susanne Buse für die N₂-Physisorptionsmessungen und bei Frau Dr. Elke Lößler für die DRIFTS-Messungen.
Bei Frau Sandra Grabowski und Herrn PD. Dr. Michael Fechtelkord für die Durchführung der Festkörper-NMR-Messungen.
Weiterhin möchte ich Herrn Dr. Wolfgang Schmidt vom MPI in Mühlheim für die Durchführung der Argon-Physisorptionsmessungen für seine Hilfsbereitschaft bei der Auswertung und Interpretation diverser Physisorptionsmessungen danken. Auch möchte ich mich bei den Mitarbeitern von Frau Prof. Dr. Christine Kirschhock bedanken, die die Katalysemessungen für uns durchgeführt haben. Und schließlich meinen herzlichen Dank an Herrn Hartmut Mammen für das unermüdliche Korrekturlesen meiner Arbeit, und seine generelle Unterstützung bei allen möglichen Problemen.
Meiner Familie, meiner Lebensgefährtin und meinen Freunden danke ich besonders herzlich für die liebevolle Unterstützung, während der letzten drei Jahre.
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic-Absorption-Spektroskopie</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmert and Teller</td>
</tr>
<tr>
<td>BJH</td>
<td>Barrett, Joyner und Hallenda</td>
</tr>
<tr>
<td>CMC</td>
<td>critical micelle concentration</td>
</tr>
<tr>
<td>CTAB</td>
<td>Hexadecyltrimethylammonium-Bromid</td>
</tr>
<tr>
<td>CTACl</td>
<td>Hexadecyltrimethylammonium-Chlorid</td>
</tr>
<tr>
<td>CTA+</td>
<td>Hexadecyltrimethylammonium-Kation</td>
</tr>
<tr>
<td>DTA</td>
<td>Differentialthermoanalyse</td>
</tr>
<tr>
<td>DMHA</td>
<td>Dimethylhexadecimalmin</td>
</tr>
<tr>
<td>HPDEC</td>
<td>High Power Decouplin</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively-Coupled-Plasma Optical-Emission-Spectroscopy</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>LCT</td>
<td>Liquid Crystal Templating</td>
</tr>
<tr>
<td>MAS</td>
<td>Magic Angle Spinning</td>
</tr>
<tr>
<td>MCM</td>
<td>Mobil's Composition of Matter</td>
</tr>
<tr>
<td>mm</td>
<td>mikro-/mesoporös</td>
</tr>
<tr>
<td>NLDFT</td>
<td>Nonlocal Density Functional Theory</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear-Magnetic-Resonance</td>
</tr>
<tr>
<td>QMS</td>
<td>Quadrupol-Massenspektrometer</td>
</tr>
<tr>
<td>surfactant</td>
<td>surface active agent</td>
</tr>
<tr>
<td>TG</td>
<td>Thermogravimetrie</td>
</tr>
<tr>
<td>TPAOH</td>
<td>Tetrapropylammonium-Hydroxid</td>
</tr>
<tr>
<td>TPA+</td>
<td>Tetrapropylammonium-Kation</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmissionselektronenmikroskopie</td>
</tr>
<tr>
<td>TBHP</td>
<td>Tert-butylhydroperoxid</td>
</tr>
<tr>
<td>TEOS</td>
<td>Tetraethoxysilan</td>
</tr>
<tr>
<td>TBOT</td>
<td>Tetra-n-butylorthotitanat</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>XAS</td>
<td>X-ray-Absorption-Spectroscopy</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray Absorption-Near-Edge-Structure</td>
</tr>
</tbody>
</table>
"Die Wissenschaft ist nichts Abstraktes, sondern als Produkt menschlicher Arbeit auch in ihrem Werdegang eng verknüpft mit der Eigenart und dem Schicksal der Menschen, die sich ihr widmen." (Emil Fischer)

„Seit man begonnen hat, die einfachsten Behauptungen zu beweisen, erwiesen sich viele von ihnen als falsch.“ (Bertrand Russell)
1. Einleitung

1.1 Geordnete Mesoporöse Materialien

Abbildung 1: Schematische Darstellung der drei M41S-Phasen: A) lamellares MCM-50 B) hexagonales MCM-41 C) kubisches MCM-48 [2].

sind, wird nur die periodische Ordnung der Kanal- und Wandelemente wiedergegeben. Allerdings findet sich keine Periodizität entlang des Verlaufes der Mesoporen, also in Richtung der c-Achse der Einheitszelle. Es treten bis zu sieben Reflexe auf, die im hexagonalen System indiziert werden können. Ein typischer Wert der Gitterkonstanten beträgt 45 Å. Eine detaillierte Beschreibung dieser Substanzklasse findet sich in der Veröffentlichung von Beck et. al [3].

Abb. 2: Schematische Darstellung des Hexadecyltrimethylammonium-Bromid Moleküls.

Von den Forschern der Mobil Oil Corporation wurde 1992 für die Synthese von M41S Materialien der „liquid crystal templating“ (LCT)-Mechanismus vorgeschlagen [1, 3]. Dieser ist schematisch in Abbildung 3 dargestellt.

Abb. 3: Schematische Darstellung des Synthesemechanismus von hexagonalem MCM-41, wie er 1992 von Beck et al. vorgeschlagen wurde [1,3].

gezeigt, dass die MCM-41 Bildung nicht über diesen Reaktionspfad erfolgt. Zum einen liegt die Konzentration des Tensids in der Reaktionslösung weit unterhalb der kritischen Mizellenkonzentration für diese Substanz, und zum anderen erfolgt die Synthese der Mesostrukturen unter Bedingungen (bei pH-Werten von 12 bis 14 und Silicatkonzentrationen von 0.5 bis 5 %), bei denen das Silicat alleine nicht kondensieren würde. Arbeiten von Monnier et al. [6], Vartuli et al. [7], Firouzi et al. [8] und Fyfe et al. [2] bestätigen die Richtigkeit des ersten Reaktionspfades. Letzten Endes bestimmen die Reaktionsbedingungen wie Temperatur, Ionenstärke und pH-Werte die Bildung dieser mesoporösen Materialien.

1.1.1 Hydrothermale Nachbehandlung von MCM-41/ MCM-48

Ein weiterer Effekt der Nachbehandlung ist die Zunahme der Stabilität des Produkts bezüglich der Calcinierung. Bei unbehandeltem MCM-41 schrumpft die Einheitszelle beim Calcinieren um etwa 10 – 15 %. Bei einer hydrothermal nachbehandelten Probe jedoch um höchstens 2 - 5%.

Schließlich nimmt das Q^3/Q^4-Verhältnis der nachbehandelten Proben ab, so dass mehr Q^4 verknüpftes Silicium vorliegt und das Material somit einen stärker hydrophoben Charakter aufweist.

1.2 Zeolithe

Der Zeolith Silicalit-1 ist ein Mitglied der Familie der MFI-Gerüststrukturen. Er gehört zur Gruppe der Pentasile und besitzt die Summenformel $[\text{Na}_n \cdot (\text{H}_2\text{O})_{16}] \cdot [\text{Al}_{16}\text{Si}_{40}\cdot \text{O}_{192}]^{-}\text{MFI} \ (n < 27)$ [14]. Ein besonderes strukturelles Merkmal dieser Gruppe sind die fünfgliedrigen Ringe, deren Anordnung zu einer Gitterstruktur mit zehngliedrigen Ringen führt. Zeolithe des MFI-Gerüststrukturtyps besitzten geradlinige Kanäle parallel zur
b-Achse mit einem Durchmesser von 5,3 Å x 5,6 Å, und parallel zur a-Achse mit einem Durchmesser von 5,1 Å x 5,5 Å. Die Zeolithe ZSM-5 und TS-1 besitzen die gleiche Struktur wie Silicalit-1, jedoch sind bei ZSM-5 ein Teil der Siliciumatome gegen Aluminiumatome und beim TS-1 gegen Titanatome ausgetauscht [15].

Abbildung 4 zeigt die Elementarzelle eine Zeolithen des MFI-Gerüststrukturtyps mit Blickrichtung auf die b-Achse. In Tabelle 1 sind die Zellparameter und die Raumgruppe dieses Gerüststrukturtyps zusammengefasst.

Abbildung 4: Schematische Darstellung der Elementarzelle eines Zeolithen des MFI-Gerüststrukturtyps mit Blickrichtung in die Kanäle parallele zur b-Achse.

In Tabelle 1 sind die Zellparameter und die Raumgruppe dieses Strukturtyps zusammengefasst.

<table>
<thead>
<tr>
<th>\tilde{a}</th>
<th>\tilde{b}</th>
<th>\tilde{c}</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>Raumgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,0 Å</td>
<td>19,7 Å</td>
<td>13,1 Å</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>Pnma</td>
</tr>
</tbody>
</table>

1.3 Mikro-/mesoporöse Materialien

Typischerweise werden Kristallkeimlösungen von silicatischen Zeolithen, z. B. Silicalit-1 oder häufiger noch von alumosilicatischen Zeolithen wie ZSM-5, Zeolith Y oder Zeolith BETA für die Synthese solcher mikro-/mesoporöser Materialien verwendet.

Um eindeutig zwischen mikro-/mesoporösem Materialien und Kompositmaterialien unterscheiden zu können, muss ein erheblicher Aufwand betrieben werden. Deshalb sind eine große Menge an verschiedenen Charakterisierungsmethoden wie z. B. Röntgenbeugung (XRD), IR-Spektroskopie, Transmissionselektronenmikroskopie (TEM), Thermoanalyse, Festkörper-NMR, UV-Vis-Spektroskopie, N₂-Physisorption nötig, um genaue Aussagen über die strukturellen Eigenschaften dieser Materialien machen zu können.

Der Vollständigkeit halber sollen hier noch drei weitere Möglichkeiten kurz skizziert werden, mit deren Hilfe man die hydrothermale Instabilität von MCM-41 verbessern kann:

1. Durch die Verwendung von sogenannten Triblockcopolymeren, wie z. B. P123, als Templat für die Synthese von MCM-41 können dickere Porenwände erzeugt werden. Die auf diese Weise hergestellten Verbindungen weisen Wanddicken von 30 Å bis 60 Å auf und sind damit hydrothermal stabiler als herkömmlich synthetisierter MCM-41 [32].

2. Die Verwendung von calciniertem MCM-41 als Siliciumquelle für eine erneute MCM-41 Synthese führt zu dickeren Wänden und damit zu erhöhter hydrothermaler Stabilität [33].

oder TS-1. In einer Veröffentlichung aus dem Jahr 2002 äußern T.J. Pinnavaia et al. jedoch Zweifel an der Wirksamkeit dieser Methode [35]. So besitzt die Elementarzelle von ZSM-5 die Abmessungen von 20,0 Å x 19,7 Å x 13,1 Å. Dies ist deutlich größer als die Wanddicke des MCM-41 von ungefähr 10 - 15 Å. So ist es wahrscheinlicher, dass eine separate zeolitische Phase neben dem MCM-41 entsteht und somit ein Kompositmaterial erhalten wird.
2. Aufgabenstellung und Zielsetzung

In ihrer Veröffentlichung aus dem Jahr 2004 beschreiben Xiao et al. die Synthese von mm-MCM-41(TS-1) im sauren und basischen Milieu, unter Verwendung von CTAB als Templat [27]. Die entstandenen Materialien
bezeichnen sie als MTS-5 (unter basischen Bedingungen synthetisiert) und MTS-8 (unter sauren Bedingungen synthetisiert). Dabei ähnelt MTS-8 insofern MTS-9, als dass seine katalytische Aktivität nach der Calcinierung stark abnimmt. MTS-5 hingegen zeigt diesbezüglich keinerlei Veränderung durch die Calcinierung.

Die Aufgabenstellung dieser Arbeit teilt sich in drei Teile. Im ersten Teilbereich soll die Synthese von mm-MCM-41(TS-1) und mm-MCM-48(TS-1) im basischen Milieu, mit einem quatären Ammoniumsalz als Templat für die mesoporöse Struktur, durchgeführt werden. Als Vorlage zur Synthese diente eine Arbeit von Pinnavaia et al. [16], in der die Autoren die Synthese von mikro-/mesoporösem MCM-41 aus Kristallkeimlösungen der Zeolithen BETA und ZSM-5 beschreiben. Mittels dieser Synthese sollte zuerst mm-MCM-41(Silicalit-1) hergestellt werden, um die Reproduzierbarkeit der Synthesemethode zu überprüfen. Die so synthetisierten Materialien wurden mittels XRD, IR-Spektroskopie, TEM, Thermoanalyse, Festkörper-NMR und N₂-Physisorption umfangreich charakterisiert. Es gelang jedoch nicht die beschriebenen Ergebnisse zu reproduzieren. Bei der angegebenen Synthesetemperatur von 150 °C entstand in der Regel nur reinem Zeolith oder ein Kompositmaterial aus MCM-41 und Zeolith. Und auch bei niedriger Temperatur konnte nur rein mesoporöser MCM-41 erzeugt werden. Trotz diverser Modifikationen der Synthese, wie z. B. der Synthesetemperatur, der Menge an Templat, der Synthesezeit oder der Siliciumquelle, gelang nur einmal die Synthese eines mikro-/mesoporösem Material, dass jedoch trotz mehrerer Versuche nicht reproduziert

...
werden konnte.

![Abbildung 5: Schematische Darstellung des Entstehungsprozesses der Nanoslabs, wie er von Kirschhock et al. 2005 formuliert wurde [37].](image)

Kirschhock et al. verwendeten in der von ihnen beschriebenen Synthese nur Silicalit-1 Kristallkeimlösungen, deuten jedoch an, dass auch der Einbau anderer Atome als Silicium möglich ist.

Als erstes soll nun die Synthese solcher mikro-/mesoporöser Materialien aus zeolithischen Baueinheiten des Silicalit-1 hergestellt werden, die im Weiteren als mm-MCM-41(Silicalit-1) und mm-MCM-48(Silicalit-1)

Die synthetisierten mikro-/mesoporösen Materialien sollen mittels Röntgenbeugung (XRD), IR-Spektroskopie, Transmissionselektronenmikroskopie (TEM), Thermoanalyse, Festkörper-NMR, UV-Vis-Spektroskopie, Atom-Absorption-Spectroscopy(AAS), N_2-Physisorption, Argon-Physisorption und XANES (X-ray Absorption Near Edge Structure) charakterisiert werden.

Im dritten Teilbereich schließlich geht es um die hydrothermale Nachbehandlung von Mikro-/mesoporösen
3. Charakterisierungsmethoden

3.1 Röntgenbeugung (XRD)

Mittels der Röntgenbeugung (XRD) werden die Materialien bezüglich ihrer Struktur charakterisiert. Abbildung 6 und 7 zeigen jeweils ein typisches Pulverbeugungsdiagramm von MCM-41 bzw. MCM-48. Aus den gemessenen 2θ-Werten läßt sich die Gitterkonstante a_0 der Einheitszelle berechnen.

Abbildung 6: Röntgenbeugungsdiagramm von calciniertem MCM-41.

Es ist entscheidend, dass im Beugungsdiagramm der mikro-/mesoporösen Materialien keine Beugungsreflexe eines Zeolithen, wie z. B. Silicalit-1 oder TS-1, vorhanden sind, da dies auf die Anwesenheit einer eigenständigen Zeolithphase hindeuten würde, und somit ein unerwünschtes Kompositmaterial entstanden wäre. Abbildung 8 zeigt ein typisches Pulverbeugungsdiagramm eines Zeolithen des MFI-Gerüststrukturtyps.
Abbildung 8: Röntgenbeugungsdiagramm eines Zeolithen des MFI-Gerüststrukturtyps. Für die acht intensivsten Reflexe sind die hkl-Werte angegeben.

Teilweise wurden Langzeitmessungen mit 4 Meßzyklen mit einer Dauer von je 6 Stunden durchgeführt, um auszuschließen, dass eventuell vorhandene sehr kleine bzw. sehr breite Peaks des Zeolithen bei der Übersichtsmessung im Beugungsdiagramm nicht erkannt werden konnten (siehe Kapitel 5.2.1 und 5.4.1).

3.2 Transmissionselektronenmikroskopie (TEM)

3.3 Festkörper-NMR

Bei rein mesoporösem MCM-41 nimmt durch die hydrothermale Nachbehandlung die Anzahl an Q^4 verknüpften Siliciumatomen zu, und somit das Q^3/Q^4-Verhältnis ab [11]. Mittels der 29Si-MAS-NMR wird
untersucht, ob dies auch bei der hydrothermalen Nachbehandlung von MCM-48 der Fall ist. Auch für die mikro-/mesoporösen Materialien wird mittels $^{29}\text{Si-MAS-NMR}$ untersucht, ob es durch die hydrothermale Nachbehandlung zu einer Veränderung des Q^3/Q^4-Verhältnis kommt.

3.4 N_2-Physisorption/ Argon-Physisorption

Auch für die mikro-/mesoporösen MCM-41 und MCM-48 Materialien werden das Gesamtporenvolumen, die BET-Oberfläche und die Porenradienverteilung aus der Adsorptionsisothermen der N_2-Physisorption bestimmt. Für einige der mikro-/mesoporösen Materialien werden zusätzlich Argon-Physisorptionsmessungen durchgeführt, um die Porenradienverteilung und das Porenvolumen der Mikroporen bestimmen zu können. Die Auswertung erfolgt hierbei ebenfalls nach der NLDFT-Methode.

3.5 Thermoanalyse

Mikro-/mesoporöser MCM-41 und MCM-48, die aus zeolithischen Kristallkeimlösungen erzeugt wurden, sollten zwei unterschiedliche Template enthalten. Zum einen das CTA$^+$-Kation, das als Templat für die Bildung der mesoporösen Struktur verwendet wurde, und zum anderen das TPA$^+$-Kation, das als Templat für die

3.6 Atom-Absorption-Spectroscopy (AAS)/ Inductively-Coupled-Plasma Optical-Emission-Spectroscopy (ICP-OES)

Der Gehalt an Titan in mm-MCM-41(TS-1) und MCM-48(TS1) bzw. Aluminium in mm-MCM-41(ZSM-5) wird mittels ICP oder AAS bestimmt.

3.7 IR-Spektroskopie

Wie bereits in Abschnitt 2 ausgeführt, ist es bei der Synthese von mm-MCM-41(TS-1) und mm-MCM-48(TS-1) wichtig, dass die Titanzentren dieselbe Koordination wie in makroskopischem TS-1 aufweisen. Das bedeutet

3.8 UV-Vis-Spektroskopie

3.9 X-Ray Absorption Spectroscopy (XAS)

3.10 Katalytische Testreaktion

4. Experimenteller Teil

4.1 Synthese von rein mesoporösem MCM-41 \[47\]

Bei der Synthese von MCM-41 wurden 1,97 g (5,4 mmol) CTAB (Aldrich) mit 1,36 mL (3,8 mmol) einer 25wt% Tetramethylammonium-Hydroxid Lösung (Aldrich) und 13,36 mL (742,3 mmol) dest. Wasser vermischt und unter rühren auf 30 °C - 35 °C erwärmt. Sobald die Lösung klar wurde, wurden 1,2 g (20 mmol) Aerosil zugegeben und weitere 2 Stunden bei gleicher Temperatur gerührt. Anschließend wurde die Reaktionsmischung 24 Stunden bei 20 °C gealtert. Danach wurde sie in einen Autoklaven umgefüllt und bei 120 °C 2 Tage im Ofen erhitzt. Das Produkt wurde abfiltriert, mit dest. Wasser gewaschen, 24 Stunden bei RT getrocknet und, mit einer Aufheizrate von 1K/min, 5 Stunden bei 540 °C calciniert.

4.2 Synthese von rein mesoporösem MCM-48

Für die Synthese von MCM-48 wurden 13,74 mL (13,72 mmol) einer 1N NaOH-Lösung (VWR) in eine Polypropylenflasche gegeben und diese im Wasserbad auf 60 °C erwärmt. Dann wurden vorsichtig 6,9 mL (30,82 mmol) TEOS (Aldrich, 98% GC) unter rühren zugetropft. Es wurde weitere 15 min gerührt und anschließend 28,72 mL (21,79 mmol) einer 25wt.% CTACl (Fluka, purum) Lösung unter rühren zu der Reaktionsmischung zugegeben. Nach weiteren 15 min rühren, wurde die Reaktionsmischung in einen Autoklaven umgefüllt, und 4 Tage bei 95 °C im Ofen erhitzt. Danach wurde das Produkt abfiltriert, mit dest. Wasser gewaschen, 24 Stunden bei Raumtemperatur getrocknet. Vor der Calcinierung wurde das Produkt mit einer Waschlösung, bestehend aus 90 mL dest. Wasser, 10 mL konz. HCl und 5 mL Ethanol (Riedel de Haën, p.a.), gewaschen. Anschließend wurde der MCM-48 erneut 24 Stunden bei RT getrocknet und, mit einer Aufheizrate von 1K/min, 5 Stunden bei 540 °C calciniert.

4.3 Synthese der mikro-/mesoporösen Materialien

4.3.1 Beschreibung der Synthese der mikro-/mesoporösen Materialien

Bei der Synthese von mm-MCM-41(ZSM-5) trat allerdings das Problem auf, dass das Aluminiums in den erzeugten Materialien nach der Calcination keine rein tetraedrische Koordination aufwies, sondern auch oktaedrische koordiniertes Aluminium vorhanden war. Daher wurde die Zusammensetzung der Kristallkeimlösung variiert und schließlich auch ein anderer Aluminium precursor verwendet. (Bezüglich weiterer Details dazu siehe Kapitel 4.3.4 und die Diskussion der Ergebnisse in Abschnitt 5.6). Aufgrund dieser Schwierigkeiten mit der Synthese von mm-MCM-41(ZSM-5), konnte vor Beendigung dieser Arbeit nicht mit der Synthese von mm-MCM-48(ZSM-5) begonnen werden.

Bei der Synthese von mm-MCM-41(ZSM-5) trat allerdings das Problem auf, dass das Aluminiums in den erzeugten Materialien nach der Calcination keine rein tetraedrische Koordination aufwies, sondern auch oktaedrische koordiniertes Aluminium vorhanden war. Daher wurde die Zusammensetzung der Kristallkeimlösung variiert und schließlich auch ein anderer Aluminium precursor verwendet. (Bezüglich weiterer Details dazu siehe Kapitel 4.3.4 und die Diskussion der Ergebnisse in Abschnitt 5.6). Aufgrund dieser Schwierigkeiten mit der Synthese von mm-MCM-41(ZSM-5), konnte vor Beendigung dieser Arbeit nicht mit der Synthese von mm-MCM-48(ZSM-5) begonnen werden.

Bei der Synthese von mm-MCM-41(Silicalit-1), mm-MCM-48(Silicalit-1), mm-MCM-41(TS-1) und mm-MCM-48(TS-1) wurde zusätzlich die Temperatur variiert, bei der die Kristallkeimlösung gealtert wurde. Man kann davon ausgehen, dass die Wachstumsgeschwindigkeit der Kristalle bei höheren Temperaturen größer ist als bei Raumtemperatur. Dementsprechend würde man erwarten, dass die Wände des Silicatgerüsts dicker werden, was wiederum zu einer größeren Einheitszelle des MCM-41 bzw. MCM-48 führt. Wenn dies wirklich der Fall sein sollte, wäre es möglich mittels der Syntheseparameter Einfluss auf die Wanddicke des mikro-/mesoporösen Materials zu nehmen.

4.3.2 Synthese von mm-MCM-41(Silicalit-1) und mm-MCM-48(Silicalit-1) [17]

In einer typischen Synthese wurden 8,03 mL (35,84 mmol) TEOS (Aldrich, 98% GC) langsam unter rühren zu 6,36 mL (12,64 mmol) einer 40wt% TPAOH-Lösung (BASF, alkalifrei) getropft. Da die Hydrolyse des TEOS stark exotherm verläuft, wurde das Reaktionsgefäß im Wasserbad gekühlt. Nach der TEOS Zugabe wurde die Mischung 30 min bei RT gerührt. Anschließend wurden 6,11 mL (339,44 mmol) dest. Wasser langsam zugetropft. Die entstandene Kristallkeimlösung hatte die molare Zusammensetzung:
TEOS : TPAOH : Wasser von 1 : 0,35 : 15,45.

Sie wurde 20 - 96 Stunden bei 20 °C – 80 °C gealtert. Um die Synthese abzuschließen wurden für die mm-MCM-41(Silicalit-1) Synthese 60 g einer 10wt% (16,46 mmol CTAB (Aldrich)) und 80 °C heißen CTAB-Lösung zu der Kristallkeimlösung gegeben, und die Mischung 20 min gerührt. Für die mm-MCM-48(Silicalit-1) Synthese wurden 20 mL (1111 mmol) dest. Wasser und 6 g (16,46 mmol) festes CTAB zu der
Kristallkeimlösung gegeben. Die so entstandene Reaktionsmischung wurde einen Tag bei 21 °C gerührt, und dann im Autoklaven für 3 Tage bei 100 °C erhitzt. Der weitere Verlauf der Synthese war für beide Ansätze identisch. Das Produkt wurde abfiltriert, mit dest. Wasser gewaschen und bei 60 °C 24 Stunden im Ofen getrocknet. Anschließend wurde das CTAB durch Extraktion mit wasserfreiem Ethanol (Riedel de Haën, p.a.) entfernt. Dazu wurde 1 g Produkt mit 80 mL Ethanol und 0,16 mL Essigsäure (Merck, p.a.) gemischt und bei 77 °C eine Stunde unter Rückfluss erhitzt. Dieser Vorgang wurde 2 mal wiederholt, wobei bei der zweiten Wiederholung nur 0,08 mL Essigsäure verwendet wurden. Danach wurde das extrahierte Produkt 24 Stunden bei 60 °C getrocknet und, mit einer Aufheizrate von 1K/min, erst 1 Stunde bei 300 °C und dann 1 Stunde bei 450 °C calciniert.

4.3.3 Synthese von mm-MCM-41(TS-1) und mm-MCM-48(TS-1)

Bei der Synthese von mm-MCM-41(TS-1) bzw. mm-MCM-48(TS-1) wurden 8,03 mL (35,84 mmol) TEOS (Aldrich, 98% GC) langsam unter rühren zu 6,36 mL (12,64 mmol) einer 40wt.% TPAOH-Lösung (BASF, alkalifrei) getropft. Da die Hydrolyse des TEOS stark exotherm verläuft, wurde das Reaktionsgefäß im Wasserbad gekühlt. Nach der TEOS Zugabe wurde die Mischung 30 min bei RT gerührt. Anschließend wurden 0,21 mL (0,55 mmol) TBOT (Tetra-n-butylorthotitanat) (Merck) langsam zu der Reaktionsmischung getropft und weitere 10 min gerührt. Danach wurden 6,11 mL (339,44 mmol) dest. Wasser langsam zugetropft. Die entstandene Kristallkeimlösung hatte die molare Zusammensetzung:

<table>
<thead>
<tr>
<th>TEOS</th>
<th>TPAOH</th>
<th>TBOT</th>
<th>Wasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,35</td>
<td>0,02</td>
<td>15,45</td>
</tr>
</tbody>
</table>

Sie wurde 24 Stunden bei 20 °C – 60 °C gealtert. Um die Synthese abzuschließen wurden für die mm-MCM-41(TS-1) Synthese 60 g einer 10wt.% (16,46 mmol CTAB (Aldrich)) und 80 °C heißen CTAB-Lösung zu der Kristallkeimlösung gegeben, und die Mischung 20 min gerührt. Für die mm-MCM-41(TS-1) Synthese wurden 60 mL (3333 mmol) dest. Wasser und 6 g (16,46 mmol) festes CTAB zu der Kristallkeimlösung gegeben. Die so entstandene Reaktionsmischung wurde einen Tag bei 21 °C gerührt, und dann im Autoklaven für 3 Tage bei 100 °C erhitzt.

Der weitere Verlauf der Synthese war für beide Ansätze identisch. Das Produkt wurde abfiltriert, mit dest. Wasser gewaschen und bei 60 °C 24 Stunden im Ofen getrocknet. Anschließend wurde das CTAB durch Extraktion mit wasserfreiem Ethanol (Riedel de Haën, p.a.) entfernt. Dazu wurde 1 g Produkt mit 80 mL Ethanol und 0,16 mL (2,77 mmol) Essigsäure (Merck, p.a.) gemischt und bei 77 °C 1 Stunde unter Rückfluss erhitzt. Dieser Vorgang wurde 2 mal wiederholt, wobei bei der zweiten Wiederholung nur 0,08 mL Essigsäure verwendet wurden. Anschließend wurde das extrahierte Produkt 24 Stunden bei 60 °C getrocknet und, mit einer Aufheizrate von 1K/min, erst 1 Stunde bei 300 °C und dann 1 Stunde bei 450 °C calciniert.
4.3.4 Synthese von mm-MCM-41(ZSM-5)

Die Synthese von mm-MCM-41(ZSM-5) wurde mit 4 unterschiedlichen Methoden durchgeführt:

1. 8,03 mL (35,84 mmol) TEOS (Aldrich, 98% GC) und 0,3 mL (1,22 mmol) Aluminium-tri-sec-butoxid (Aldrich) wurden miteinander vermischt und dann langsam unter rühren zu 6,36 mL (12,64 mmol) einer 40wt.% TPAOH-Lösung (BASF, alkalifrei) getropft. Da die Hydrolyse des TEOS stark exotherm verläuft, wurde das Reaktionsgefäß im Wasserbad gekühlt. Nach der TEOS/Aluminium-tri-sec-butoxid Zugabe wurde die Mischung 1 Stunde bei RT gerührt. Danach wurden 6,11 mL (339,44 mmol) dest. Wasser langsam zugetropft. Die entstandene Kristallkeimlösung hatte die molare Zusammensetzung:

 TEOS : TPAOH : Al : Wasser von 1: 0,35 : 0,03 : 15,45.

 Sie wurde 24h bei 21 °C gealtert. Um die Synthese abzuschließen wurden 60 g einer 10wt.% (16,46 mmol CTAB (Aldrich)) und 80 °C heißen CTAB-Lösung zu der Kristallkeimlösung gegeben, und die Mischung 20 min gerührt. Nach Ende der Synthese wurde das Produkt abfiltriert, mit dest. Wasser gewaschen und bei 60 °C 24 Stunden im Ofen getrocknet. Anschließend wurde das CTAB durch Extraktion mit wasserfreiem Ethanol (Riedel de Haën, p.a.) entfernt. Dazu wurde 1 g Produkt mit 80 mL Ethanol und 0,16 mL Essigsäure (Merck, p.a.) gemischt und bei 77 °C 1 Stunde unter Rückfluß erhitzt. Dieser Vorgang wurde 2 mal wiederholt, wobei bei der zweiten Wiederholung nur 0,08 mL Essigsäure verwendet werden. Anschließend wurde das extrahierte Produkt 24 Stunden bei 60 °C getrocknet und, mit einer Aufheizrate von 1K/min, erst 1 Stunde bei 300 °C und dann 1 Stunde bei 520 °C calciniert.

2. 8,03 mL (35,84 mmol) TEOS (Aldrich, 98% GC) und 0,3 mL (1,22 mmol) Aluminium-tri-sec-butoxid (Aldrich) wurden miteinander vermischt und dann langsam unter rühren zu 6,36 mL (12,64 mmol) einer 40wt% TPAOH-Lösung (alkalifrei, BASF) getropft. Da die Hydrolyse des TEOS stark exotherm verläuft, wurde das Reaktionsgefäß im Wasserbad gekühlt. Nach der TEOS/Aluminium-tri-sec-butoxid Zugabe wurde die Mischung 1 Stunde bei RT gerührt. Danach wurde eine Mischung aus 6,11 mL (339,44 mmol) dest. Wasser und 0,35 mL (0,35 mmol) einer 1N NaOH-Lösung (VWR) langsam zugetropft. Die entstandene Kristallkeimlösung hatte die molare Zusammensetzung:

 TEOS : TPAOH : Al : Na : Wasser von 1: 0,35 : 0,03 : 0,01 : 15,45.

 Der weitere Syntheseverlauf erfolgte analog Methode 1.

3. 6,83 mL (30,5 mmol) TEOS (Aldrich, 98% GC) und 0,44 mL (1,75 mmol) Aluminium-tri-sec-butoxid (Aldrich) wurden miteinander vermischt und dann langsam unter rühren zu 5,53 mL (11 mmol) einer 40wt% TPAOH (alkalifrei, BASF) Lösung getropft. Da die Hydrolyse des TEOS stark exotherm verläuft, wurde das Reaktionsgefäß im Wasserbad gekühlt. Nach der TEOS/Aluminium-tri-sec-butoxid Zugabe wurde die Mischung 1 Stunde bei RT gerührt. Danach wurde eine Mischung aus 7,52 mL
(417,8 mmol) dest. Wasser und 0,2 mL (0,2 mmol) einer 1N NaOH-Lösung (VWR) langsam zugetropft. Die entstandene Kristallkeimlösung hatte die molare Zusammensetzung:

4. 0,25 g (1,22 mmol) Aluminiumtriisopropylat (Fluka) wurden in einer Polypropylenfasche unter rühren in 5,53 mL (11 mmol) einer 40wt% TPAOH-Lösung (alkalifrei, BASF) gelöst. Anschließend wurden 6,83 mL (30,5 mmol) TEOS (Aldrich, 98% GC) langsam unter rühren zu getropft. Da die Hydrolyse des TEOS stark exotherm verläuft, wurde das Reaktionsgefäß im Wasserbad gekühlt. Nach der TEOS Zugabe wurde die Mischung 1 Stunde bei RT gerührt. Danach wurde eine Mischung aus 7,52 mL (417,8 mmol) dest. Wasser und 0,2 mL (0,2 mmol) einer 1N NaOH-Lösung (VWR) langsam zugetropft. Die entstandene Kristallkeimlösung hat die molare Zusammensetzung: TEOS : TPAOH : Al : Na : Wasser von 1 : 0,36 : 0,06 : 0,007 : 19,8.

Der weitere Syntheseverlauf erfolgte analog Methode 1.

4.4 Hydrothermale Nachbehandlung von rein mesoporösem MCM-41/MCM-48

4.5 Hydrothermale Nachbehandlung von mikro-/mesoporösem MCM-41/MCM-48
Etwa 2 g des mikro-/mesoporösen Produkts wurden mit 120 mL Wasser in einen Autoklaven gegeben. Dieser wurde für 1 Tag bei 140 °C erhitzt. Anschließend wurde die Probe abfiltriert, gewaschen und 24 Stunden bei RT getrocknet. Danach wurde sie wie bei der entsprechenden Synthesemethode beschrieben weiter aufgearbeitet.

4.6 Charakterisierungsmethoden
4.6.1 Röntgenbeugung (XRD)
Die Röntgenbeugungsexperimente wurden in Bragg-Brentano Geometrie mit Cu K\(\alpha\) Strahlung durchgeführt. Dabei wurden die Proben auf flache Probenträger gepresst.
Für die Langzeitmessungen wurde eine Image Plate Guinier Kamera der Firma Huber mit Cu K\(\alpha\) Strahlung und einem Germaniummonochromator verwendet. Die Probe wurde hierbei in eine 0,3 mm durchmessende Glaskapillare gefüllt.
4.6.2 Transmissionselektronenmikroskopie (TEM)

4.6.3 Festkörper-NMR
Die 29Si-MAS-NMR Messungen wurden an einem BRUKER ASX 400 Spektrometer unter Verwendung eines BRUKER Standard Probenkopfes mit einer Frequenz von 74,49 MHz und einer Probenrotationsfrequenz von 4,0 kHz durchgeführt. Gemessen wurde mit einer Pulslänge von 4 μs und einer Wartezeit von 60 s unter Verwendung einer 1H Breitbandentkopplung (HPDEC). Die Spektrenbreite betrug 20 kHz.
Die 27Al-Festkörper NMR Messungen wurden an einem BRUKER ASX 400 Spektrometer unter Verwendung eines BRUKER Standard Probenkopfes mit einer Frequenz von 104,27 MHz und einer Probenrotationsfrequenz von 12,5 kHz durchgeführt. Gemessen wurde mit einer Pulslänge von 0,6 μs und einer Pulsfolge von 0,1 s. Die Spektrenbreite betrug 125 kHz.
Die Feldstärke des Magneten betrug bei allen Messungen 9,34 T.

4.6.4 N_2-Physisorption/ Argon Physisorption
N_2 Physisorptionsmessungen wurden an einem Quantachrome Autosorb durchgeführt. Vor den Messungen wurden die Proben 2h bei 673K unter Vakuum ausgeheizt. Die Messungen wurden von Mitarbeitern des Lehrstuhls für Technische Chemie der Ruhr-Universität Bochum durchgeführt.
Zusätzliche Messungen wurden mit einem Quantachrome Nova 4200e durchgeführt. In diesem Fall wurden die Proben vor der Messung 10h bei 200 °C ausgeheizt. Diese Messungen wurden in der Gruppe von Frau Prof. Dr. Irina I. Ivanova am „Laboratory of kinetics and catalysis“ der Staatlichen Lomonossov-Universität in Moskau durchgeführt.
Die Argon-Physisorptionsmessungen wurden an einem ASAP 2010 Sorptionsgerät der Firma Micromeritics gemessen. Die Proben wurden dazu für 3 Stunden bei 350 °C ausgeheizt und anschliessend bei 87 K in einem Bad aus flüssigem Argon mit Argon als Adsorbtiv vermessen. Die Messungen wurden von Herrn Dr. Wolfgang Schmidt am Max-Planck-Institute für Kohlenforschung in Mülheim durchgeführt.

4.6.5 Thermoanalyse
Zusätzlich wurden einige Materialien an einer Thermowaage des Typs CAHN TG131 gemessen, die mit einem
einem Quadrupol-Massenspektrometer des Typs Omnistar der Firma Pfeiffer gekoppelt ist. Dabei wurde Stickstoff als Inertgas und ein Gemisch aus 20 % Sauerstoff und 80 % Stickstoff als Reaktionsgas verwendet. Die Proben wurden mit 1K/min von 303 K auf 873 K aufgeheizt und 15 Minuten bei dieser Temperatur gehalten.

4.6.6 Atom-Absorption-Spectroscopy (AAS)/ Inductively-Coupled-Plasma Optical-Emission-Spectroscopy (ICP-OES)

4.6.7 IR-Spektroskopie

4.6.8 UV-Vis-Spektroskopie
Für die Aufnahme der UV-VIS-Spektren wurde ein UV-VIS Lambda 9 Spektrometer der Firma Perkin Elmer verwendet. Die Proben wurden in diffuser Reflektion gemessen.

4.6.9 X-Ray Absorption Spectroscopy (XAS)

4.6.10 Katalytische Testreaktion
Der Test der katalytischen Eigenschaften von mm-MCM-41(TS-1) wurde in der Gruppe von Prof. Dr. Christine Kirschhock am „Centre for Surface Chemistry and Catalysis“ an der „Katholieke Universiteit Leuven“ in Belgien durchgeführt.

Die Epoxiderung von Cyclohexen und 1-Hexen wurde in einem Glassreaktor mit einem Volumen von 10 mL durchgeführt. Um die Reaktionsmischung auf die für die Reaktion benötigte Temperatur zu erwärmen, wurde der Reaktor in einen beheizbaren Kupferblock versenkt. Gerührt wurde die Reaktionsmischung durch einen Magnetrührer.

Bei allen Reaktionen wurden 4,5 mmol Edukt und 5 mL Lösungsmittel, 2,25 mL Oxidationsmittel und 30 mg Katalysator verwendet. Die Epoxiderung von Cyclohexen und 1-Hexen in Methanol wurde bei 40 °C durchgeführt, die Epoxidierung in Decan bei 90°C. Die Reaktionsdauer betrug 24 Stunden. Die entstandenen Produkte wurden mittels GC/MS analysiert.
5. Ergebnisse und Diskussion

5.1 Hydrothermale Nachbehandlung von mesoporösem MCM-41/MCM-48

5.1.1 Hydrothermale Nachbehandlung von MCM-41

Es wurden für MCM-41 verschiedene Serien von hydrothermalen Nachbehandlungen bei 130 °C, 140 °C und 150 °C durchgeführt.

5.1.1.1 XRD

Abbildung 9: Vergleich der Beugungsdiagramme von MCM-41hytr 7d/130 und MCM-41 as-made (links) und MCM-41hytr 7d/130 calciniert und MCM-41hytr 7d/130 ca (rechts). Man erkennt bei dem hydrothermal nachbehandeltem Material deutlich die Verschiebung der Reflexe zu kleineren 2θ-Werten.
Abbildung 10: Vergleich der Beugungsdiagramme von MCM-41hytr 1d/140, MCM-41hytr 3d/140, MCM-41hytr 5d/140 und MCM-41 as-made (links) und MCM-41hytr 1d/140 ca, MCM-41hytr 3d/140 ca, MCM-41hytr 5d/140 ca und MCM-41 ca (rechts). Man erkennt bei den hydrothermal nachbehandelten Materialen eine deutliche Verschiebung der Reflexe zu kleineren 2θ-Werten, die mit fortschreitender Dauer der Nachbehandlung zunimmt.

Abbildung 13: Vergleich der Beugungsdiagramme von MCM-41hytr 5d/140 ca und MCM-41ca. Der (110) und der (200)
Reflex sind bei MCM-41hytr 5d/140 ca breiter und von geringerer Intensität als bei MCM-41 ca.

Wie man in den Abbildungen 9 -13 erkennen kann, ist die Verschiebung der Beugungsreflexe von der Dauer
und der Temperatur der Nachbehandlung abhängig. Bei längerer Nachbehandlungszeit bzw. bei höherer
Temperatur kommt es zu einer stärkeren Verschiebung der Beugungsreflexe zu kleineren 2θ-Werten. Diese
Verschiebung der Reflexlagen zu kleineren Winkeln bedeutet gleichzeitig, dass es zu einer Vergrößerung der
Einheitszelle der MCM-41 Materialien kommt. Die Vergrößerung der Einheitszelle wird entweder durch eine
Aufweitung der Poren oder durch eine Zunahme der Wanddicke der Poren verursacht, oder aber durch
Kombination der beiden Prozesse.

In Abbildung 12 und 13 erkennt man, dass durch die hydrothermale Nachbehandlung von MCM-41 bei 150 °C
eine Vergrößerung der Einheitszelle erreicht wird. Gleichzeitig aber werden der (110) und der (200) Reflex
breiter und verlieren an Intensität. Dies weist darauf hin, dass dieses Material einen geringeren Ordnungsgrad
aufweist als vor der hydrothermalen Nachbehandlung. Die hydrothermale Nachbehandlung von MCM-41 bei
150 °C wirkt sich somit negativ auf die Struktur von MCM-41 aus und führt nicht zu einer Zunahme des
Ordnungsgrades. Weiterhin ist der (210) Reflex im Beugungsdiagramm nicht mehr zu erkennen. Dies kann
nun einerseits ein weiteres Indiz für die Abnahme des Ordnungsgrades von MCM-41hytr 1d/150 sein. Andererseits
kann das Fehlen dieses Reflexes auf eine Zunahme der Dicke der Porenwände zurückzuführen sein. So zeigt die
Arbeit von B. P. Feuston und J. B. Higgins aus dem Jahr 1994 [50], dass bei MCM-41 ein
direkter Zusammenhang zwischen der Dicke der Porenwände und der Intensität der Reflexe im
Beugungsdiagramm besteht. Die Autoren berechneten dabei die Beugungsdiagramme von MCM-41 für
unterschiedlich große Einheitszellen und Wanddicken. So wurde zum einen die Wanddicke bei konstanter
Größe der Einheitszelle variiert, und zum anderen die Wanddicke konstant gehalten und die Größe der
Einheitszelle variiert. Die Autoren kamen zu dem Ergebnis, dass bei MCM-41 mit zunehmender Wanddicke

Aus der Lage der Reflexe im Beugungsdiagramm wird für MCM-41, sowie für die unterschiedlich hydrothermal nachbehandelten Materialien, die Gitterkonstante der Einheitszelle berechnet. Durch Einsetzen der 2θ-Werte in die Bragg’sche-Gleichung (1) lässt sich der d-Wert für jeden Reflex im Beugungsdiagramm berechnen. Gleichung (2a) bis (2d) zeigen die Berechnung der Gitterkonstante a₀ aus den verschiedenen d_{hkl}-Werten.

\[n\lambda = 2d \sin(\Theta) \]
\[\frac{n\lambda}{2\sin(\Theta)} = d \]
(1a)

\[a_0 = \frac{2d_{100}}{\sqrt{3}} \]
\[a_0 = 2d_{210} \]
\[a_0 = 2d_{210} \sqrt{\frac{28}{3}} \]
\[a_0 = \frac{4d_{200}}{\sqrt{3}} \]
(2a), (2b), (2c), (2d)

mit:

- \(d_{hkl} \): Abstand zwischen zwei parallelen Gitterebenen [Å]
- \(n \): Beugungsordnung [-]
- \(a_0 \): Gitterkonstante der Einheitszelle [Å]
- \(\lambda \): Wellenlänge der verwendeten Röntgenstrahlung [Å]
- \(\Theta \): Glanzwinkel [°]
Die Berechnung der Gitterkonstante \(a_0\) der verschiedenen MCM-41 Materialien aus dem \(d\)-Wert eines einzelnen Reflexes liefert nur sehr ungenaue Werte. Wie man anhand Gleichung (1a) erkennen kann, verhält sich der \(d\)-Wert umgekehrt proportional zu \(\sin(\Theta)\). Für Reflexe im Bereich von kleinen Beugungswinkeln ergibt sich dadurch schon aus kleinen Abweichungen von \(\Theta\) bzw. \(2\Theta\) eine große Abweichung des entsprechenden \(d\)-Wertes. Bei Röntgenstrahlung der Wellenlänge 1,5418 Å und einem \(2\Theta\)-Wert von 2 ° errechnet sich ein \(d\)-Wert von 44,2 Å. Für einen \(2\Theta\)-Wert von 2,1 ° erhält man hingegen einen \(d\)-Wert von 42,1 Å. Deshalb ist es sinnvoller zur Bestimmung der Gitterkonstante Beugungsreflexe heranzuziehen, die bei \(2\Theta\)-Werten größer 10 ° liegen. Hier ergibt sich aus Abweichungen des \(\Theta\) bzw. \(2\Theta\)-Wertes nur eine geringe Abweichungen des \(d\)-Wertes. Bei Röntgenstrahlung der Wellenlänge 1,5418 Å und einem \(2\Theta\)-Wert von 10 ° errechnet sich ein \(d\)-Wert von 8,84 Å. Für einen \(2\Theta\)-Wert von 10,1° erhält man einen \(d\)-Wert von 8,76 Å. Der Unterschied in den berechneten \(d\)-Werten ist hier also zu vernachlässiggen. Bei MCM-41 und MCM-48 liegen die Beugungsreflexe jedoch nur in einem Bereich von etwa 1,8 - 6 °. Um dennoch einen möglichst genauen Wert für die Gitterkonstante zu erhalten, wird dieser aus der Lage aller im Beugungsdiagramm enthaltenen Reflexe mit Hilfe der Methode der kleinsten Fehlerquadrate (engl.: Non Linear Least Square Method) berechnet. Für diese Berechnung wird das Programm „Celref“ [52] verwendet. Die auf diese Weise berechneten Gitterkonstanten und die dazugehörigen Standardabweichungen \(\sigma\) sind in Tabelle 2 zusammengefasst.

<table>
<thead>
<tr>
<th>Probe</th>
<th>(a_0) [Å]</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41as-made</td>
<td>51,8</td>
<td>1,8</td>
</tr>
<tr>
<td>MCM-41hytr 7d/130</td>
<td>53,2</td>
<td>1,5</td>
</tr>
<tr>
<td>MCM-41hytr 1d/140</td>
<td>51,6</td>
<td>1,8</td>
</tr>
<tr>
<td>MCM-41hytr 3d/140</td>
<td>54,4</td>
<td>1,8</td>
</tr>
<tr>
<td>MCM-41hytr 5d/140</td>
<td>55,0</td>
<td>1,8</td>
</tr>
<tr>
<td>MCM-41hytr 1d/150</td>
<td>52,0</td>
<td>1,4</td>
</tr>
<tr>
<td>MCM-41 ca</td>
<td>50,1</td>
<td>1,1</td>
</tr>
<tr>
<td>MCM-41hytr 7/130 ca</td>
<td>53,0</td>
<td>0,9</td>
</tr>
<tr>
<td>MCM-41hytr 1d/140 ca</td>
<td>50,6</td>
<td>1,1</td>
</tr>
<tr>
<td>MCM-41hytr 3d/140 ca</td>
<td>52,2</td>
<td>1,2</td>
</tr>
<tr>
<td>MCM-41hytr 5d/140 ca</td>
<td>53,1</td>
<td>0,4</td>
</tr>
<tr>
<td>MCM-41hytr 1d/150 ca</td>
<td>51,9</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Man erkennt, dass es durch die hydrothermale Nachbehandlung zu einer Vergrößerung der Einheitszelle kommt. Das Ausmaß dieser Vergrößerung ist direkt mit der Temperatur und der Nachbehandlungsdauer...
korreliert. Wie in Kapitel 1.1.1 beschrieben nimmt die Gitterkonstante von hydrothermal nachbehandeltem MCM-41 während der Calcinierung um 2-5 % ab, während es unbehandeltem MCM-41 etwa 10 -15 % sind.

Wie man anhand der in Tabelle 2 aufgelisteten Gitterkonstanten erkennt, nimmt bei dem nicht hydrothermal nachbehandeltem MCM-41 die Gitterkonstante durch die Calcinierung um etwa 3,7% ab. Dies ist ein sehr niedriger Wert. Bei den meisten hydrothermal nachbehandelten Materialien, die in Tabelle 2 aufgelistet sind nimmt die Gitterkonstante durch die Calcinierung um einen ähnlichen Betrag ab. Das spricht dafür, dass das mesoporöse Gerüst des unbehandelten MCM-41 bereits eine so hohe Stabilität bezüglich der Calcinierung aufweist, dass eine weitere Stabilisierung durch die hydrothermale Nachbehandlung nicht mehr möglich ist.

Zum Vergleich soll die hydrothermale Nachbehandlung eines anderen MCM-41-Materials betrachtet werden, das unter den gleichen Bedingungen synthetisiert wurde, wie der gerade betrachtete MCM-41.

Im folgenden wird es als MCM-41(b) bezeichnet. MCM-41(b) wurde zwei Tage bei 140 °C hydrothermal nachbehandelt.

In Abbildung 14 sind die Beugungsdiagramme von MCM-41(b) as-made, MCM-41(b) ca, MCM-41(b)hytr 5d/140 und MCM-41(b)hytr 5d/140 ca eines MCM-41 dargestellt.

![Abbildung 14: Vergleich der Beugungsdiagramme von MCM-41(b) as-made und MCM-41(b)hytr 5d/140 (links) und von MCM-41(b) ca und MCM-41(b)hytr 5d/140 ca (rechts). Durch die hydrothermale Nachbehandlung kommt es zu einer sehr deutlichen Verschiebung der Reflexe zu kleineren 2θ–Werten.](image)

Während für nicht nachbehandelten MCM-41(b) die Lage der Reflexe nach der Calcinierung fast gleich bleibt, kann bei dem unbehandelten MCM-41(b) eine deutliche Verschiebung der Reflexe zu höheren 2θ–Werten erkannt werden. Die Gitterkonstante a_0 von MCM-41(b) as-made beträgt 46,3 Å, die von MCM-41(b) ca 42,0 Å. Damit nimmt sie durch die Calcinierung um 9 % ab. Die Gitterkonstante a_0 von MCM-41(b)hytr 5d/140 beträgt 53,5 Å, die von MCM-41(b)hytr 5d/140 ca 52,8 Å. Damit nimmt sie durch die Calcinierung nur um 1,3 % ab.

Es wird also bei MCM-41(b) durch die hydrothermale Nachbehandlung eine beträchtliche Stabilisierung des Materials gegenüber der Calcinierung erreicht. Das zeigt, dass die Auswirkungen der hydrothermalen
Nachbehandlung durchaus von dem nachbehandelten Material selber abhängig sind.

5.1.1.2 Thermoanalyse

Bei MCM-41 as-made erhält man einen Gewichtsverlust von 46,8 %. Die beiden nachbehandelten Proben unterscheiden sich bezüglich des Gewichtsverlustes, der während der Thermoanalyse auftritt. So liegt er bei MCM-41hytr 1d/140 bei etwa 42,3 %, während er bei MCM-41hytr 5d/140 nur noch 37,1% beträgt. Der Gewichtsverlust aller Proben ist in Tabelle 3 zusammengefaßt.

<table>
<thead>
<tr>
<th>Proben</th>
<th>Gewichtsverlust</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41</td>
<td>46,8%</td>
</tr>
<tr>
<td>MCM-41hytr 1d/140</td>
<td>42,3%</td>
</tr>
<tr>
<td>MCM-41hytr 3d/140</td>
<td>38,1%</td>
</tr>
<tr>
<td>MCM-41hytr 5d/140</td>
<td>37,1%</td>
</tr>
<tr>
<td>MCM-41hytr 7d/130</td>
<td>41,8%</td>
</tr>
<tr>
<td>MCM-41hytr 1d/150</td>
<td>31,3%</td>
</tr>
</tbody>
</table>

5.1.1.3 N₂-Physisorptionsmessungen
Die folgenden Abbildungen zeigen die Adsorptionsisothermen der N₂-Physisorptionsmessungen von MCM-41 ca, MCM-41hytr 7d/130 ca, MCM-41hytr 1d/140 ca, MCM-41hytr 3d/140 ca, MCM-41hytr 5d/140 ca und MCM-41hytr 1d/150 ca. Dabei sind die Messpunkte des Adsorptionsasts als Vierecke und die Messpunkte des Desorptionsasts als Kreise dargestellt.

Abbildung 17: Vergleich der Adsorptionsisothermen von MCM-41 ca (links) und MCM-41hytr 7d/130 ca (rechts).
Abbildung 18: Vergleich der Adsorptionsisothermen von MCM-41hytr 1d/140 ca (rot), MCM-41hytr 3d/140 ca (schwarz) und MCM-41hytr 5d/140 ca (blau). Bei MCM-41hytr 5d/140 ca ist die Hystereseschleife deutlich stärker ausgeprägt als bei den anderen Materialien.

Abbildung 19: Adsorptionsisotherme von MCM-41hytr 1d/150 ca. Die Hystereseschleife ist ähnlich stark ausgeprägt wie bei MCM-41hytr 5d/140 ca.

Die Isothermen sind alle vom Typ IV und damit typisch für mesoporöses Material. Durch die hydrothermale Nachbehandlung verändert sich die Form der Isothermen nicht. Bei MCM-41hytr 5d-140 ca und MCM-41hytr 1d-150 ca ist die Hystereseschleife deutlich stärker ausgeprägt, als bei den anderen Materialien.

Aus den Adsorptionsisothermen wird die Porenradienverteilung, die BET-Oberfläche und das Porenvolumen ermittelt.

Abbildung 20: Vergleich der Porenradienverteilungen von MCM-41 ca (links) und MCM-41hytr 7d/130 ca (rechts). Man erkennt, dass MCM-41hytr 7d/130 ca eine schärfere Porenradienverteilung aufweist als MCM-41 ca.

Abbildung 21: Vergleich der Porenradienverteilung von MCM-41hytr 1d/140 ca, MCM-41hytr 3d/140 ca und MCM-41hytr 5d/140 ca. Dabei weist die Porenradienverteilung von MCM-41hytr 5d/140 ca neben dem Maximum bei 21,3 Å zwei weitere Maxima bei etwa 24,4 Å und 32,8 Å auf. In Abbildung 22 ist die Porenradienverteilung von MCM-41hytr 5d/140 ca zur besseren Übersicht noch einmal separat dargestellt.
Abbildung 22: Porenradienverteilung von MCM-41hytr 5d/140 ca. Neben dem Maximum bei 21,3 Å erkennt man deutlich zwei weitere Maxima bei etwa 24,4 Å und 32,8 Å.

Abbildung 23: Porenradienverteilung von MCM-41hytr 1d/150 ca. Neben dem Maximum bei 21,3 Å erkennt man noch zwei weitere sehr breite Maxima bei etwa 24,5 Å und 32,9 Å.

Da die Einheitszelle des MCM-41 aus einer Pore und einer Porenwand zusammensetzt, berechnet sich die Wanddicke der Poren aus der Differenz der Gitterkonstante \(a_0 \) und dem Porendurchmesser.

\[
\langle h \rangle = a_0 - d_h \quad (3) \quad \langle h \rangle = a_0 - 2 \ast r \quad (3a)
\]

mit:
\(d_h \): mittlerer Porendurchmesser [Å]
\(r \): mittlerer Porenradius [Å]
\(a_0 \): Gitterkonstante [Å]
\(\langle h \rangle \): Wanddicke [Å]
In Tabelle 4 sind die BET-Oberfläche, der mittlere Porendurchmesser, die berechnete Wanddicke und das Porenvolumen zusammengefaßt.

<table>
<thead>
<tr>
<th>Probe</th>
<th>BET Oberfläche [m²/g]</th>
<th>mittlerer Porenradius [Å]</th>
<th>Wanddicke [Å]</th>
<th>Porenvolumen [cm³/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41 calciniert</td>
<td>1098</td>
<td>22,1</td>
<td>5,9</td>
<td>1,276</td>
</tr>
<tr>
<td>MCM-41hytr 7d/130 ca</td>
<td>670</td>
<td>22,9</td>
<td>7,3</td>
<td>0,74</td>
</tr>
<tr>
<td>MCM-41hytr 1d/140 ca</td>
<td>788</td>
<td>22,1</td>
<td>6,6</td>
<td>0,80</td>
</tr>
<tr>
<td>MCM-41hytr 3d/140 ca</td>
<td>483</td>
<td>22,1</td>
<td>8,0</td>
<td>0,51</td>
</tr>
<tr>
<td>MCM-41hytr 5d/140 ca</td>
<td>602</td>
<td>21,2</td>
<td>10,6</td>
<td>0,73</td>
</tr>
<tr>
<td>MCM-41hytr 1d/150 ca</td>
<td>724</td>
<td>21,3</td>
<td>10,6</td>
<td>0,83</td>
</tr>
</tbody>
</table>

Im folgenden werden die aus der N₂-Physisorption erhaltenen Daten diskutiert:

1. Wanddicke:

Daher muss man davon ausgehen, dass auch für die in Tabelle 4 aufgeführten Materialien die Berechnung der Wanddicke als Differenz der Gitterkonstanten und dem Porenradius zu falschen Werten führt, und die aufgeführten Wanddicken daher um einige Ångström zu klein sind. Möglicherweise überschätzt die NLDFT-Methode hier den Porenradius der Mesoporen, so dass man zu große Poren und damit eine zu dünne Porenwand erhält. Auch die Messung der Gitterkonstanten ist mit einem gewissen Fehler behaftet, so dass auch hier die Ursache für die zu geringen Wanddicken liegen kann.

Es läßt sich jedoch unabhängig von den Physisorptionsdaten zeigen, dass es durch die hydrothermale Nachbehandlung tatsächlich zu einer Zunahme der Wanddicke kommt. Wie bereits in Abschnitt 5.1.1 ausgeführt wurde, besteht für MCM-41 ein Zusammenhang zwischen der Intensität der Beugungsreflexe und der Dicke der Wände des Silicatgerüstes. Damit besteht bei MCM-41 die Möglichkeit die durch die hydrothermale Nachbehandlung verursachte Zunahme der Wanddicke zumindest qualitativ anhand der
Röntgenbeugung nachzuweisen.

Für MCM-41, sowie die hydrothermal nachbehandelten Materialien, wird nun zum einen die Intensität des (110) Reflexes $I_{(110)}$, und zum anderen das Verhältnis der Intensität des (210) Reflexes $I_{(210)}$ zur Intensität des (200) Reflexes $I_{(200)}$ berechnet. Dabei wird die Intensität der Reflexe normiert, indem die Intensität des (100) Reflexes gleich 100 % gesetzt wird, und die Intensitäten aller anderen Reflexe dazu ins Verhältnis gebracht werden.

Bei MCM-41hytr 5d/140 ca ist im Beugungsdiagramm der (210) Reflex nicht mehr zu erkennen. Daher ist für dieses Material eine Berechnung des $I_{(210)}/I_{(200)}$-Verhältnisses nicht möglich. Für MCM-41hytr 5d/140 ca liegt der (100) Reflex bei einem 2Θ-Wert kleiner 2 °. Somit ist eine Normierung der Intensitäten der Reflexe, wie sie für die anderen Materialien durchgeführt wurde nicht möglich. Daher ist ein Vergleich der Intensitäten der Reflexe von MCM-41hytr 5d/140 ca mit denen der anderen Materialien nicht sinnvoll.

In Tabelle 5 sind die Verhältnisse der Peakintensitäten der verschiedenen Materialien zusammengefasst und in Abbildung 24 und 25 graphisch dargestellt.

<table>
<thead>
<tr>
<th>Probe</th>
<th>$I_{(110)}$</th>
<th>$I_{(210)}/I_{(200)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41 ca</td>
<td>0,27</td>
<td>0,62</td>
</tr>
<tr>
<td>MCM-41hytr 7d/130 ca</td>
<td>0,17</td>
<td>0,56</td>
</tr>
<tr>
<td>MCM-41hytr 1d/140 ca</td>
<td>0,18</td>
<td>0,60</td>
</tr>
<tr>
<td>MCM-41hytr 3d/140 ca</td>
<td>0,14</td>
<td>0,49</td>
</tr>
<tr>
<td>MCM-41hytr 1d/150 ca</td>
<td>0,10</td>
<td>-</td>
</tr>
</tbody>
</table>

Wie man anhand Tabelle 5 und Abbildung 24 und 25 erkennen kann, nimmt sowohl I_{110}, als auch das Verhältnis I_{210}/I_{200} von MCM-41 ca zu den hydrothermal nachbehandelten Materialien hin ab. So beträgt I_{110} bei MCM-41hytr 1d/140 ca 0,18, bei MCM-41hytr 3d/140 ca 0,14 und bei MCM-41hytr 5d/140 ca nur noch 0,1. Man erkennt, dass die Wanddicke mit zunehmender Temperatur bzw. zunehmender Dauer der Nachbehandlung zunimmt. Damit kann, unabhängig von den Ergebnissen der N_2-Physisorptionsmessungen, gezeigt werden, dass bei MCM-41 die Wanddicke des Silicatgerüsts durch die hydrothermale Nachbehandlung zunimmt.

Die aus der Differenz der Gitterkonstanten und dem mittleren Porenradius berechneten Wanddicken, die in Tabelle 4 angegeben sind, sind mit einem systematischen Fehler behaftet, der die Absolutwerte der Wanddicke verkleinert, jedoch die Zunahme der Wanddicke in der Tendenz richtig wiedergibt. Daher kann man schlussfolgern, dass auch die ermittelten Werte für die Größe der Gitterkonstanten und des mittleren Porenradius mit einem systematischen Fehler behaftet sind. Das heißt, dass die Tendenz der Veränderungen beider Größen, die bei den hydrothermal nachbehandelten MCM-41 Materialien beobachtet wird, richtig ist, und somit die Gitterkonstanten und die Porenradien untereinander vergleichbar sind.

2. BET-Oberfläche:

Wie Tabelle 4 zeigt, nimmt bei allen Materialien die BET-Oberfläche durch die hydrothermale Nachbehandlung ab. Dies lässt sich durch folgende Überlegung erklären:

Betrachtet man 1 g MCM-41, so weist dies, abhängig von der Dichte, ein bestimmtes Volumen auf, das im weiteren als Volumenelement dV bezeichnet wird. Innerhalb dieses Volumenelements dV befindet sich eine bestimmte Anzahl an Mesoporen. Durch die hydrothermale Nachbehandlung kommt es nun zu einer Vergrößerung des Porendurchmessers dieser Mesoporen und/oder zu einer Zunahme der Wanddicke des
Silicatgerüsts. Als Folge davon nimmt die Zahl der Mesoporen im Volumenelement \(dV \) ab. Dadurch wiederum nimmt die Gesamtoberfläche der Poren im Volumenelement \(dV \) und damit auch pro Gramm MCM-41 ab. Da die BET-Oberfläche pro Gramm Material bestimmt wird, nimmt sie in Folge dessen ab. Wie stark die BET-Oberfläche durch die hydrothermale Nachbehandlung abnimmt, ist nicht mit der Dauer oder der Temperatur der Nachbehandlung korreliert.

3. Porenvolumen
Tabelle 4 kann man entnehmen, dass das Porenvolumen von MCM-41 durch die hydrothermale Nachbehandlung abnimmt. Dabei ist das Ausmaß, um dass das Porenvolumen abnimmt, weder mit den Bedingungen der Nachbehandlung, noch mit der Abnahme der BET-Oberfläche korreliert.

4. Porenradius

In der Porenradienverteilung von MCM-41hytr 5d/140 ca finden sich neben dem Maximum bei 21,2 Å zwei weitere Maxima bei 24,4 Å und 32,8 Å. Dies sind allerdings schärfer als bei MCM-41hytr 1d/150 ca. Somit nimmt der Ordnungsgrad bei MCM-41hytr 5d/140 ca nicht so stark ab wie bei MCM-41hytr 1d/150 ca. Dies dürfte auch die Ursache dafür sein, dass es bei MCM-41hytr 5d/140 ca, im Gegensatz zu MCM-41hytr 1d/150 ca, nicht zu einer Verbreiterung des (110) und des (200) Reflexes im Beugungsdiagramm kommt, und die beiden Reflexe noch gut aufgelöst sind.

Dies ist ein überraschendes Ergebnis, da in allen Veröffentlichungen, die sich mit der hydrothermalen Nachbehandlung von MCM-41 befassen, von einer Zunahme des Porenradius berichtet wird. Über eine Abnahme des Porenradius wurde, soweit bekannt ist, bis jetzt noch nicht berichtet.

Es konnte jedoch gezeigt werden, dass bei allen nachbehandelten Materialien eine Zunahme der Wanddicke eintritt, die um so größer ist, desto höher die Temperatur bzw. desto länger die Dauer der Nachbehandlung ist. Es kommt also bei der hydrothermalen Nachbehandlung immer zu einer Zunahme der Dicke des Silicatgerüsts, unabhängig von einer Vergrößerung des Porendurchmessers. Daraus kann man schließen, dass die beiden Prozesse unabhängig voneinander ablaufen. Es ist also immer möglich, mittels hydrothermalen Nachbehandlung Einfluss auf die Wanddicke des Silicatgerüstes von MCM-41 zu nehmen.

Führt man die hydrothermale Nachbehandlung an einem MCM-41 Material von geringerer Ordnung durch, so kann man durchaus eine Zunahme des Porendurchmessers beobachten. Dies soll am Beispiel des bereits in Abschnitt 5.1.1.1 erwähnten MCM-41(b) demonstriert werden (siehe Abbildung 14). Hier findet sich nach einer hydrothermalen Nachbehandlung von 5 Tagen bei 140 °C sowohl eine Zunahme des Porenradius als auch der Wanddicke. Gleichzeitig nehmen die BET-Oberfläche und das Gesamtporenvolumen ab. Die Adsorptionsisothermen und die Porenradienverteilungen von MCM-41(b) ca und MCM-41(b) hytr 5d/140 ca sind im Anhang abgebildet (Abbildung 125 und Abbildung 126).

5.1.2 Hydrothermale Nachbehandlung von MCM-48

5.1.2.1 XRD

Alle in 5.1.2.1 diskutierten Experimente sind mit einem Diffraktometer mit einer Bragg-Brentano Geometrie durchgeführt worden. Die Beugungsdiagramme der uncalcinierten und calcinierten Produkte sind in den folgenden Abbildungen dargestellt.

\[n\lambda = 2d \sin(\theta) \] \hspace{1cm} \[\frac{n\lambda}{2 \sin(\theta)} = d \] \hspace{1cm} \[(1) \]

\[a_0 = d_{211} \sqrt{6} \] \hspace{1cm} \[a_0 = d_{220} \sqrt{8} \] \hspace{1cm} \[a_0 = d_{420} \sqrt{20} \] \hspace{1cm} \[a_0 = d_{312} \sqrt{22} \] \hspace{1cm} \[(4a) \hspace{1cm} (4b) \hspace{1cm} (4c) \hspace{1cm} (4d) \]

5.1.2.2 Thermoanalyse
Mit der Thermoanalyse wird ermittelt, ob während der hydrothermalen Nachbehandlung von MCM-48 ein Teil des Templats aus dem Porensystem entfernt wird. Dazu werden MCM-48 as-made, MCM-48hytr und mit

Abbildung 32: Thermoanalyse von MCM-48 as-made.

Abbildung 33: Thermoanalyse von MCM-48gew.

Der Gewichtsverlust für MCM-48 as-made liegt bei 65,6%. Bei MCM-48gew findet sich ein deutlich geringerer
Gewichtsverlust von etwa 54,8%. Damit bestätigt sich die Vermutung, dass bei der Behandlung von MCM-48 mit der Waschlösung ein Teil des Templats entfernt wird. Es ist anzunehmen, dass das Templat während der Nachbehandlung als Stütze für das Porensystem dient und es somit vor dem Zusammenbrechen bewahrt. Wird nun die Menge an vorhandenem Templat durch den Waschprozess auf einen zu niedrigen Wert abgesenkt, kann das Templat während der hydrothermalen Nachbehandlung das Porensystem nicht mehr ausreichend stützen, und somit kommt es zum Zusammenbruch der mesoporösen Struktur.

Im folgenden sind die Ergebnisse der Thermoanalyse für zwei weitere nachbehandelte MCM-48 Materialien abgebildet.

![Abbildung 34: Vergleich der Thermoanalyse von MCM-48hytr 1d/140 (links) und MCM-48hytr 5d/140 (rechts).](image)

<table>
<thead>
<tr>
<th>Tabelle 7: Überblick über den Gewichtsverlust von unterschiedlich nachbehandelten MCM-48-Materialien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proben</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>MCM-48 as-made</td>
</tr>
<tr>
<td>MCM-48gew</td>
</tr>
<tr>
<td>MCM-48hytr 7d/130</td>
</tr>
<tr>
<td>MCM-48hytr 1d/140</td>
</tr>
<tr>
<td>MCM-48hytr 3d/140</td>
</tr>
<tr>
<td>MCM-48hytr 5d/140</td>
</tr>
<tr>
<td>MCM-48hytr 1d/150</td>
</tr>
</tbody>
</table>

5.1.2.3 N₂-Physisorptionsmessungen

In den folgenden Abbildungen sind die Isothermen der N₂-Physisorptionsmessungen abgebildet. Dabei sind die Messpunkte des Adsorptionsasts als Vierecke und die Messpunkte des Desorptionsasts als Kreise dargestellt.

Abbildung 35: Adsorptionsisotherme von MCM-48 ca

Abbildung 36: Vergleich der Adsorptionsisothermen von MCM-48hytr 1d/130 ca (rot) und MCM-48hytr 7d/130 ca (schwarz).

Abbildung 37: Vergleich der Adsorptionsisothermen von MCM-48hytr 1d/140 ca (orange), MCM-48hytr 3d/140 ca (blau) und MCM-48hytr 5d/140 ca (schwarz).

Abbildung 38: Adsorptionisotherme von MCM-48hytr 1d/150 ca.

Wie bei bei MCM-41 kann die Vergrößerung der Einheitszelle während der hydrothermalen Nachbehandlung entweder durch die Aufweitung der Poren oder durch Zunahme der Wanddicke erfolgen, oder durch eine Kombination beider Prozesse. Deshalb werden neben den Porenradia auch die Wanddicken der Poren...
berechnet. Dazu wird die von Schumacher et al. [56] hergeleitete Gleichung 5 verwendet.

\[
\frac{a_o}{\xi} - \frac{D_h}{2} = \langle h \rangle \quad (5) \\
\frac{a_o}{\xi} - r = \langle h \rangle \quad (5a)
\]

mit:

\(D_h\): hydraulischer Porendurchmesser [Å]
\(r\): Porenradius [Å]
\(a_o\): Gitterkonstante [Å]
\(\langle h \rangle\): Wanddicke [Å]
\(\xi\): reduzierte Fläche pro kristallographischer Einheitszelle [-] = 3,092

Für den hydraulischen Porendurchmesser verwenden Schumacher et al. den aus den Physisorptionsmessungen ermittelten mittleren Porendurchmesser. In Tabelle 8 sind die BET-Oberfläche, der mittlere Porenradius, die berechnete Wanddicke und das Porenvolumen zusammengefasst.

Tabelle 8: Übersicht über die aus der \(N_2\)-Physisorption berechneten Werte der BET-Oberfläche, des mittleren Porenradius, der Wanddicke und des Porenvolumens von unterschiedlich hydrothermal nachbehandelten MCM-48 Materialien.

<table>
<thead>
<tr>
<th>Probe</th>
<th>mittlerer Porenradius [Å]</th>
<th>BET-Oberfläche [m²/g]</th>
<th>Wanddicke [Å]</th>
<th>Porenvolumen [cm³/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-48 ca</td>
<td>17,40</td>
<td>1216</td>
<td>9,0</td>
<td>0,89</td>
</tr>
<tr>
<td>MCM-48hytr 1d/130 ca</td>
<td>18,30</td>
<td>1052</td>
<td>11,2</td>
<td>0,93</td>
</tr>
<tr>
<td>MCM-48hytr 7d/130 ca</td>
<td>20,45</td>
<td>1106</td>
<td>11,0</td>
<td>1,12</td>
</tr>
<tr>
<td>MCM-48hytr 1d/140 ca</td>
<td>18,30</td>
<td>1034</td>
<td>11,5</td>
<td>0,99</td>
</tr>
<tr>
<td>MCM-48hytr 3d/140 ca</td>
<td>19,65</td>
<td>1007</td>
<td>12,9</td>
<td>1,03</td>
</tr>
<tr>
<td>MCM-48hytr 5d/140 ca</td>
<td>20,45</td>
<td>777</td>
<td>12,9</td>
<td>0,81</td>
</tr>
<tr>
<td>MCM-48hytr 1d/150 ca</td>
<td>18,90</td>
<td>713</td>
<td>14,0</td>
<td>0,78</td>
</tr>
</tbody>
</table>

Im folgenden werden die aus der \(N_2\)-Physisorption erhaltenen Daten diskutiert:

1. Wanddicke

Die Werte für die Wanddicken, die sich für MCM-48 aus der Differenz der Gitterkonstanten und dem Porenradius berechnen, liegen fast alle über einem Wert von 10 Å, so dass sie kristalchemisch durchaus sinnvoll sind. In Analogie zu den Ergebnissen der \(N_2\)-Physisorptionsmessungen von MCM-41 ist jedoch davon

Man erkennt, dass die Wanddicke mit steigender Temperatur der Nachbehandlung zunimmt, wenngleich auch die Unterschiede teilweise recht gering sind. Mit der Dauer der Nachbehandlung ist jedoch keine Korrelation zu erkennen.

2. BET-Oberfläche

Bei allen Materialien nimmt die BET-Oberfläche durch die hydrothermale Nachbehandlung ab. Die Ursache hierfür diegleich wie bei MCM-41, und wurde bereits in Abschnitt 5.1.1.1 diskutiert. Wie stark die BET-Oberfläche durch die hydrothermale Nachbehandlung abnimmt, ist nicht mit der Dauer oder der Temperatur der Nachbehandlung korreliert.

3. Porenvolumen

4. Porenradien

Wie genau es überhaupt dazu kommt, dass die Wände des MCM-48 durch die Nachbehandlung dicker werden, ist bis jetzt noch nicht geklärt.

5.1.2.4 NMR-Spektroskopie
In den Abbildungen 40 und 41 sind die 29Si-MAS-NMR-Spektren für MCM-48(b) ca, MCM-48(b)hytr 2d/140 ca, MCM-48(c) ca, und MCM-48(c)hytr 2d/140 ca dargestellt.

Abbildung 40: Vergleich der 29Si-HPDEC-MAS-NMR Spektren von MCM-48(b) ca (links) und MCM-48(b)hytr 2d/140 ca (rechts). In beiden Spektren ist das Q\(^3\) Signal nur in Form einer schwach ausgeprägten Schulter des Q\(^4\) Peaks zu erkennen.

Abbildung 41: Vergleich der 29Si-HPDEC-MAS-NMR Spektren von MCM-48(c) ca (links) und MCM-48(c)hytr 2d/140 ca (rechts). In beiden Spektren ist das Q\(^3\) Signal nur in Form einer schwach ausgeprägten Schulter des Q\(^4\) Peaks zu erkennen.

In allen Spektren ist das Q\(^3\) Signal nicht als eigenständiger Peak zu erkennen, sondern nur als Schulter des Q\(^4\) Peaks. Das Q\(^3\)/Q\(^4\)-Verhältnis wird durch Integration der Peakflächen ermittelt. Dies geschieht mit Hilfe des Programms „dmfit“ [59]. Für MCM-48(b) ca erhält man ein Q\(^3\)/Q\(^4\)-Verhältnis von 0,5. Für MCM-48hytr(b) 2d/140 ca beträgt das Q\(^3\)/Q\(^4\)-Verhältnis hingegen 0,05. Das hydrothermal nachbehandelte Material weist somit fast nur noch Q\(^4\) verknüpfte Siliciumatome auf. Bei MCM-48(c) ca beträgt das Q\(^3\)/Q\(^4\)-Verhältnis 0,45. Nach der
hydrothermalen Nachbehandlung liegt es bei 0,41. Auch hier nimmt das Q3/Q4-Verhältnis ab, wenngleich auch in sehr geringerem Maß als bei MCM-48(b). Diese Ergebnisse zeigen, dass es bei MCM-48 durch die hydrothermale Nachbehandlung zu einer Zunahme an Q4 verknüpften Siliciumatomen kommt. Aber es muss beachtet werden, dass bei MCM-48(b) das Q3/Q4-Verhältnis deutlich stärker abnimmt als bei MCM-48(c), obwohl beide Materialien unter den selben Bedingungen nachbehandelt wurden. Wie schon anhand anderer Charakterisierungsmethoden für MCM-41 und MCM-48 gezeigt wurde, sind die Auswirkungen der hydrothermale Nachbehandlung zu einem gewissen Anteil von den Eigenschaften des nachbehandelten Materials selber abhängig. So nimmt das Q3/Q4-Verhältnis von MCM-48 bei der hydrothermalen Nachbehandlung ab, aber in welchem Ausmaß das geschieht, ist von den betreffenden MCM-48-Materialien abhängig.

5.1.3 Zusammenfassung der Ergebnisse
Durch systematische Untersuchungen konnte gezeigt werden, dass bei der hydrothermalen Nachbehandlung von MCM-41 und MCM-48 prinzipiell die gleichen Veränderungen auftreten:

- Man beobachtet eine Zunahme der Wanddicke.

Die aus der Differenz der Gitterkonstanten und dem mittleren Porenradius berechneten Wanddicken sind mit einem systematischen Fehler behaftet, der die Absolutwerte der Wanddicke verkleinert, jedoch die Zunahme der Wanddicke in der Tendenz richtig wiedergibt. Daher kann man schlussfolgern, dass auch die ermittelten Werte für die Größe der Gitterkonstanten und des mittleren Porenradius mit einem systematischen Fehler behaftet sind. Das heißt, dass die Tendenz der Veränderungen beider Größen, die bei den hydrothermal nachbehandelten MCM-41 Materialien
beobachtet wird, richtig ist, und somit die Gitterkonstanten und die Porenradien untereinander vergleichbar sind.

- Die BET-Oberfläche nimmt durch die hydrothermale Nachbehandlung ab. Eine Korrelation mit den Bedingungen der Nachbehandlung besteht nicht.
- Das Q3/Q4 Verhältnis nimmt ab. Dies entspricht einer Zunahme der Q4 verknüpften Siliciumatome.

Während die Bindung des CTA⁺-Kation an die Silanolgruppen der Porenwände durch elektrostatische Wechselwirkungen verstärkt wird, ist dies beim neutralen DMHA Molekül nicht möglich. Aufgrund dieser Wechselwirkung ist davon auszugehen, dass während der hydrothermalen Nachbehandlung hauptsächlich das DMHA aus dem Porensystem des MCM-41 bzw. MCM-48 entfernt wird. Dadurch ist die verbleibende Menge an Templat ein Maß dafür, wie schnell die Zersetzungsreaktion des CTA⁺ zu DMHA abläuft. Es konnte gezeigt werden, dass bei höherer Nachbehandlungstemperatur der Zersetzungsprozess des CTA⁺-Kations beschleunigt abläuft.

5.2 Charakterisierung von mm-MCM-41(Silicalit-1)

5.2.1 XRD

Es fällt auf, dass v174 as-made einen sehr breiten (100) Reflex zeigt, nicht aber die für MCM-41 typischen (110) und (200) Reflexe. Stattdessen ist ein breiter und sehr flacher Reflex im Bereich von 3° - 4,5° 2θ zu erkennen. Anhand der Lage des (100) Reflexes läßt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßiger die Mesoporen in MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm. Weiterhin kann man noch einen Reflex bei 3,3 ° und einen bei 6,6 ° beobachten. Sie sind jedoch auf Reste des als Templat verwendeten CTAB’s zurückzuführen.

<table>
<thead>
<tr>
<th>Probe</th>
<th>(a_0) [Å]</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v174 as-made</td>
<td>46,0</td>
<td>0,9</td>
</tr>
<tr>
<td>v174 ca</td>
<td>41,2</td>
<td>0,5</td>
</tr>
<tr>
<td>V174hytr</td>
<td>52,3</td>
<td>1,1</td>
</tr>
<tr>
<td>v174 tc</td>
<td>47,9</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Man kann anhand der in Tabelle 9 dargestellten Ergebnisse erkennen, dass das hydrothermal nachbehandelte Material eine erhöhte Stabilität bezüglich der Calcinierung aufweist. So beträgt die Abnahme des Zellparameters bei v174 ca 13,3%, während sie bei v174 tc mit 7,3% deutlich geringer ist. Somit zeigt mm-MCM-41(Silicalit-1) diesbezüglich bei der hydrothermalen Nachbehandlung das gleiche Verhalten wie rein mesoporöser MCM-41.

In den Abbildungen 44 und 45 sind die Beugungsdiagramme der Langzeitmessungen von mm-MCM-41(Silicalit-1) (V171) abgebildet. Für die Langzeitmessungen wurde eine Image Plate Guinier Kamera der Firma Huber verwendet. Die Probe wurden hierbei in eine 0,3 mm durchmessende Glaskapillare gefüllt. Die Röntgenbeugungsdiagramme von v171 as-made und v171 ca für den Bereich von 2 - 10° 2\(\theta\) sind im Anhang abgebildet (Abbildung 130).

Der breite Peak im Bereich von 10 ° bis 40 ° wird durch die für die Messung verwendeten Glaskapillaren verursacht. Bei mm-MCM-41(Silicalit-1) as-made findet sich ein Reflex bei etwa 21,4° und ein Reflex bei etwa 24,4° 2θ. Diese sind auf Reste des als Templat verwendeten CTAB’s zurückzuführen. Es finden sich aber keine weiteren Reflexe, die auf eine eigenständige Silicalit-1 Phase hindeuten würden. Im Beugungsdigramm von mm-MCM-41(Silicalit-1) tc findet sich ebenfalls nur noch der breite Peak der Glaskapillaren, aber keine weiteren Signale, die auf das Vorhandensein einer eigenständigen Silicalit-1 Phase hindeuten würden.

Bei v189 und v190 wurde die Temperatur, bei der die Kristallkeimlösung gealtert wurde, variiert. Sie betrug bei v189 70 °C und bei v190 80 °C. Es ist anzunehmen, dass die Wachstums geschwindigkeit der Keime bei diesen Temperaturen größer ist als bei Raumtemperatur. Dementsprechend ist zu vermuten, dass die Wände des Silicatgerüst dicker werden, was wiederum zu einer größeren Einheitszelle des MCM-41 führen würde. Somit würde man für v189 und v190 eine Verschiebung der Reflexe im Beugungsdigramm zu kleineren 2θ-Werten erwarten. In Abbildung 46 und 47 sind die Beugungsdigramme von v189 as-made, v190 as-made und v174 as-made abgebildet.
Man erkennt, dass es jedoch nicht zu der vermuteten Verschiebung der Reflexe kommt. So liegen die (100) Reflexe von v174 as-made und v189 as-made etwa bei dem gleichen 2θ-Wert, während der (100) Reflex von V190 as-made im Vergleich zu v174 as-made sogar zu einem höheren 2θ-Wert verschoben ist. Daraus folgt, dass es nicht zu einer Zunahme der Wanddicke gekommen ist.
5.2.2 N₂-Physisorptionsmessungen/ Argon-Physisorptionsmessungen

In den folgenden Abbildungen sind die Isothermen der N₂-Physisorptionsmessungen von v216 ca und v216 tc abgebildet. Dabei sind die Messpunkte des Adsorptionsasts als Vierecke und die Messpunkte des Desorptionsasts als Kreise dargestellt. Aus den gemessenen Daten wird die BET-Oberfläche, die Porenradienverteilung und das Porenvolumen bestimmt.

Abbildung 48: Vergleich der N₂-Adsorptionsisothermen von v216 ca (schwarz) und v216 tc (rot). Bei kleinen \(p/p_0 \) Werten ist der Anstieg der Isotherme bei v216 tc flacher als bei v216 ca.

Tabelle 10: Übersicht über die aus der N$_2$-Physisorption berechneten Werte der BET-Oberfläche, des mittleren Porenradius und des Porenvolumens von v216 ca und v216 tc

<table>
<thead>
<tr>
<th>Probe</th>
<th>BET-Oberfläche [m2/g]</th>
<th>Mittlerer Porenradius [Å]</th>
<th>Gesamtporenvolumen [cm3/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V216 ca</td>
<td>1535</td>
<td>17,45</td>
<td>1,34</td>
</tr>
<tr>
<td>V216 tc</td>
<td>993</td>
<td>21,26</td>
<td>0,91</td>
</tr>
</tbody>
</table>

Die Wanddicke, die sich aus der Differenz der Gitterkonstanten und des Porenradius für v216 ca und v216 tc errechnet, ist deutlich kleiner als 10 Å. Ein derartiger Wert für die Wanddicke ist kristallchemisch nicht sinnvoll (siehe auch die Diskussion zur Bestimmung der Wanddicke in Abschnitt 5.1.1.3). Der Grund, warum man trotzdem dieses Ergebnis erhält, mag in der Methode liegen, die zur Berechnung der Porenradienverteilung verwendet wurde. Möglicherweise überschätzt die NLDFT-Methode hier den Porenradius der Mesoporen, so dass man zu große Poren und damit eine zu dünne Porenwand erhält. Auch die Messung der Gitterkonstanten ist mit einem gewissen Fehler behaftet, so dass auch hier die Ursache für die zu geringen
Wanddicken liegen kann. Die Auswertung der TEM-Aufnahmen von v216 tc zeigt jedoch, dass dessen Wanddicke ca. 11 Å beträgt (siehe Abschnitt 5.2.6).

Die Synthese von mm-MCM-41(Silicalit-1) erfolgte nach einer Vorlage von Kirschhock et al. [17]. Vergleicht man die Wanddicke des Silicatgerüsts von v216 tc mit den von Kirschhock et al. synthetisierten mm-MCM-41(Silicalit-1) Materialien, die sie als Zeotile-1 bezeichnen, so zeigt sich ein deutlicher Unterschied. Die Wanddicke von Zeotile-1 beträgt 26 Å. Somit ist die Wanddicke von v216 tc um etwa den Faktor 2 kleiner. Dabei Bestimmen die Autoren die Wanddicke für Zeotile-1 nur aus HRTEM Aufnahmen, so dass durchaus eine Vergleichbarkeit der Wanddicken gegeben ist. Warum sich die Wanddicken von v216 tc und Zeotile-1 so stark unterscheiden, ist bis jetzt nicht geklärt.

Zur Analyse der Mikroporen wurde für v216 tc eine Physisorptionsmessung mit Argon als Adsorbat durchgeführt. Abbildung 50 zeigt die Adsorptionsisotherme und die daraus berechnete Porenradienverteilung für v216 tc. Abbildung 51 zeigt die Porenradienverteilung für einen Porenradius von 3 - 20 Å.

Abbildung 50: Ar-Adsorptionsisotherme (links) und Porenradienverteilung (rechts) von v216 tc. Das Maximum der Porenradienverteilung für den Mesoporenbereich liegt bei 19,85 Å.

Abbildung 51: Porenradienverteilung von v216 tc für Porenradien von 2 – 20 Å. Es lässt sich eine bimodale Porenradienverteilung vermuten, deren Maxima bei etwa 3,5 - 4 Å und 9,5 Å liegen.
Im Gegensatz zu der Isotherme, die sich aus der N₂-Physisorptionsmessung ergibt, erreicht man bei der Ar-Adsorptionsisothermen (Abbildung 50) einen minimalen \(p/p_0 \)-Wert von \(6,23 \times 10^{-5} \). Man erkennt, dass die Isotherme im Bereich solch kleiner Drücke sehr stark ansteigt. Dieses Verhalten entspricht einer Typ l Isotherme, wie sie für mikroporöse Materialien typisch ist. Bei höheren \(p/p_0 \)-Werten gleicht die Isotherme einer Typ IV Isotherme und zeigt auch die für mesoporöse Materialien typische Hystereseschleife. Das zeigt, wie wichtig es besonders für mikro-/mesoporöse Materialien ist, bei möglichst niedrigen Drücken mit der Physisorptionsmessung zu beginnen. Fängt man erst bei höheren Drücken an zu messen, werden alle vorhandenen Mikroporen sofort mit Adsorbat gefüllt, und es ist nicht möglich eine Porenradienverteilung für die Mikroporen zu erstellen.

Für v216 tc weist die Porenradienverteilung im Mikroporenbereich starke Schwankungen auf. Es lässt sich eine bimodale Verteilung vermuten. Die Maxima der recht breiten Porenradienverteilungen liegen bei etwa 3,5 - 4 Å und 9,5 Å. Das Mikroporenvolumen dieser beiden Porentypen liegt bei etwa 0,06 cm³/g und 0,05 cm³/g⁻¹. In Tabelle 11 sind alle aus der Adsorptionsisothermen berechneten Größen zusammengefaßt.

Tabelle 11: Übersicht über die aus der Ar-Physisorption berechneten Werte der BET-Oberfläche, des mittleren Porenradius und des Porenvolumens von v216 tc.

<table>
<thead>
<tr>
<th>Probe</th>
<th>BET-Oberfläche [m²/g]</th>
<th>Mittlerer Mesoporenradius [Å]</th>
<th>Mikroporenvolumen [cm³/g]</th>
<th>Gesamtporenvolumen [cm³/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V216 tc</td>
<td>760</td>
<td>19,85</td>
<td>0,11</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Die Porenradienverteilung und auch das Porenvolumen der Mikroporen müssen jedoch kritisch betrachtet werden. Hierzu soll eine kurze Plausibilitätsbetrachtung zum Anteil des Mikroporenvolumens am Gesamtporenvolumen dienen:

Die Dichte von calciniertem mesoporösem MCM-41 liegt bei etwa 0,97 g/cm³[60]. Für mm-MCM-41(Silicalit-1)
kann man in etwa von der gleichen Dichte ausgehen. Betrachtet man nun 1 g mm-MCM-41(Silicalit-1) so entspricht dies einem Volumen von 1,03 cm³. Diese Volumen kann man aufteilen in das Volumen der Porenwände und das Volumen der Mesoporen. Wie sich aus der Argonphysisorption ergibt, beträgt das Mesoporenvolumen von v216 tc 0,52 cm³/g. Subtrahiert man dieses von den 1,03 cm³ so verbleibt ein Restvolumen von 0,51 cm³. Diese stellt das Volumen der Wand mit den darin enthaltenen Mikroporen dar. Zeolithen vom MFI-Gerüststrukturtyp weisen eine Porosität von etwa 10 % auf. Das heißt, dass einem Volumen der Porenwand von 0,51 cm³ ein Mikroporenvolumen von 0,051 cm³ entspricht. Eine Porosität von 10 % gilt aber nur für einen voll ausgebildeten Zeolithen. Für zeolithischen Baueinheiten, dies das Silicatgerüst von mm-MCM-41(Silicalit-1) bilden, kann man wohl eher von einer geringeren Porosität ausgehen. Geht man von 5 % statt von 10 % aus, ergibt sich ein Mikroporenvolumen von 0,025 cm³. Damit liegt man um den Faktor 4,4 unter dem Wert, der aus der Physisorptionsmessung stammt.

Betrachtet man jedoch in Abbildung 51 die Porenradienverteilung mit dem Maximum bei 9,1 Å, so fällt auf, dass sie deutlich in den Mesoporenbereich hineinreicht, so dass ein großer Teil der Poren, die zu dieser Verteilung gehören, eher zu den Mesoporen zu rechnen sind. Dementsprechend kann das für diese Verteilung ermittelte Porenvolumen auch nicht als reines Mikroporenvolumen angesehen werden. Betrachtet man daher nur die Poren mit den Porenradien von 4 - 4,5 Å als Mikroporen, so erhält man ein Mikroporenvolumen von 0,06 cm³. Aber auch dieser Wert liegt noch um mehr als das doppelte über dem Mikroporenvolumen, welches sich aus der Plausibilitätsbetrachtung ergibt. Allerdings ist die Porenradienverteilung der Mikroporen sehr breit, so dass die Bestimmung des Mikroporenvolumens nicht ganz exakt ist, und eine gewisse Ungenauigkeit nicht ausgeschlossen werden kann.

Die Ergebnisse der Ar-Physisorptionsmessung zeigen damit, dass in mm-MCM-41(Silicalit-1) Mikroporen mit einem Porenradius von etwa 4 – 4,5 Å vorliegen. Bei v202 tc beträgt die Wanddicke in v202 ca. 10 Å. Daher ist davon auszugehen, dass die Mikroporen durch die komplette Wand des Silicatgerüstes verlaufen, und damit zwei Mesoporen miteinander verbinden. Wäre dies nicht der Fall, das heißt eine Mikropore würde nur einige Ångström weit in die Wand hineinreichen, ergäbe sich für die verbleibende Wanddicke ein Wert von unter 10 Å. Wie bereits aber mehrfach ausgeführt, ist das aus kristallchemischer Sicht nicht sinnvoll.

5.2.3 Thermoanalyse

Abbildung 52: Vergleich der Thermoanalyse von v174 as-made (links) und v174hytr (rechts)

zu einer weitere Fragmentierung der Alkene, sowie zu den ersten Oxidationsreaktionen, die zur Bildung von Wasser, CO\textsubscript{2} und NO\textsubscript{2} führen. Der dritte Abschnitt schließlich liegt im Temperaturbereich von 300 °C – 350 °C. Hier wird der größte Teil der in den Mesoporen verbliebenen organischen Komponenten zu CO\textsubscript{2} und Wasser oxidiert.

Die exothermen Signale, die durch die im zweiten und dritten Abschnitt ablaufenden Prozesse entstehen, überlagern sich bei v174 as-made und führen zur Ausbildung eines Signals mit einer breiten Schulter. Bei v174hytr sind diese beiden Signale offensichtlich besser aufgelöst, wobei das Signal bei 280 °C nur eine sehr geringe Intensität aufweist. Das bedeutet, dass die Prozesse der thermischen Templatzersetzung bei v174hytr bei anderen Temperaturen ablaufen als bei v174 as-made.

Abbildung 53: Vergleich der Thermoanalyse von v174 ex (links) und v174hytr-ex (rechts). Bei beiden Materialien kann auch nach der Extraktion des CTA+-Kations ein exothermes Ereignis bei 266 °C (v174 ex) bzw. 276 °C (v174hytr-ex) beobachtet werden, dass der Zersetzung des TPA+ in den Mikroporen der zeolithischen Baueinheiten zugeordnet werden kann. Außerdem kann bei beiden Materialien das Auftreten eines zweiten breiten exothermen Peaks in der DTA-Kurve in einem Temperaturbereich von 350 °C bis 400 °C beobachtet werden.

Für v174 ex kann ein exothermer Peak in der DTA-Kurve bei einer Temperatur von 262 °C beobachtet werden. Der Gewichtsverlust beträgt nur noch 12,3 %. Da davon auszugehen ist, dass während der dreistufigen Extraktion das in den Mesoporen enthaltene CTA+ nahezu komplett entfernt wurde, kann dieses exotherme Ereignis der Zersetzung des TPA+ zugeordnet werden. Wenn aber nach dem dreistufigen Extraktionsprozess noch TPA+ in v174 ex vorhanden ist, kann es sich nicht in den Mesoporen befinden, da es sonst, genau wie das CTA+, durch die Extraktion mit Ethanol aus dem Porensystem entfernt worden wäre. Somit läßt sich schlussfolgern, dass v174 ex Mikroporen enthält, in denen sich das TPA+ befindet. Wie

Auffällig ist jedoch ein zweiter breiter exothermer Peak in der DTA-Kurve in einem Temperaturbereich von 350 °C bis 400 °C. Parallel zu diesem exothermen Prozess tritt ein Gewichtsverlust von 0,084 mg ein. Dies entspricht einem Gewichtsverlust von 1,1%. Entweder wird hier restliches Templat zersetzt oder es kommt zu Kondensationsreaktionen der Silanolgruppen. Um dies zu untersuchen, wurde eine Messung von 174ex an einer Thermowaage durchgeführt, die mit einem Massenspektrometer gekoppelt ist. Auf diese Weise kann festgestellt werden, ob bei dem fraglichen exothermen Ereignis nur Wasser oder auch Verbrennungsprodukte organischer Verbindungen, wie z. B. CO₂ entstehen.

In Abbildung 54 sind die Signale des Massenspektrometers und der Gewichtsverlust gegen die Messzeit aufgetragen. Dabei ist allerdings zu beachten, dass die Aufheizrate bei dieser Messung 1k/min betrug. Bei den anderen in diesem Abschnitt diskutierten Thermoanalysen betrug die Aufheizrate 3K/min. Eine geringere Aufheizrate hat zur Folge, dass sich die Lage der Signale zu niedrigeren Temperaturen verschiebt.
Nach 192 Minuten findet sich ein erstes Maximum bei den Signalen des Massenspektrometers. Dies entspricht einer Temperatur von 226 °C. Hier werden neben Wasser (m/z=18) und CO₂ (m/z=44) auch Moleküle mit den Massen 15 und 30 freigesetzt.

Die Ergebnisse der Thermoanalyse lassen also den Schluss zu, dass v174 ex und v174hytr-ex wirklich Mikroporen enthalten.

5.2.4 IR-Spektroskopie

In Abbildung 55 sind die IR-Spektren von v216 as-made, v216 hytr, v216 ca und v216 tc abgebildet. Für v216 ca und v216 tc ist in Abbildung 56 das Spektrum für den Bereich von 2000 bis 500 cm\(^{-1}\) vergrößert dargestellt.

Ergebnis ist vor allem, dass die Bande auch bei v174 tc, wenn auch schwächer als bei v174 ca, vorhanden ist. Dies ist ein wichtiger Hinweis darauf, dass die hydrothermale Nachbehandlung die zeolithischen Baueinheiten nicht zerstört. Weiterhin erkennt man in Abbildung 55 und 56 in den Spektren von v216 as-made, v216hytr, v216 ca und v216 tc das Auftreten einer relativ intensiven Bande bei etwa 960 cm\(^{-1}\), die durch Streckschwingung isolierter Si-OH-Bindungen verursacht werden.

5.2.5 \(^{29}\text{Si}-\text{MAS-NMR}\)

Abbildung 57 zeigt die \(^{29}\text{Si}-\text{HPDEC-MAS-NMR} \) Spektren von v174 ca und v174 tc.

Abbildung 57: \(^{29}\text{Si}-\text{HPDEC-MAS-NMR} \) Spektrum von v174 ca (links) und v174 tc (rechts). Im Spektrum von v174 ca erkennt man deutlich, dass sowohl Q\(^4\) als auch deutliche Mengen an Q\(^3\) und Q\(^2\) verknüpften Silicium vorliegen. Im Spektrum von v174 tc ist kein Q\(^2\) Signal mehr vorhanden. Das Q\(^2\) Signal ist nur in Form einer schwach ausgeprägten Schulter des Q\(^4\) Peaks zu erkennen.

Man erkennt deutlich, dass bei v174 ca sowohl Q\(^4\) als auch deutliche Mengen an Q\(^3\) und Q\(^2\) verknüpften Silicium vorliegen. Die Anteile der Q\(^4\), Q\(^3\) und Q\(^2\) verknüpften Siliciumatome werden durch Integration der Peakflächen ermittelt. Dies geschieht mit Hilfe des Programms „dmfit“ [59]. Man erhält 1% Q\(^2\), 67,6 % Q\(^3\) und 31,4 % Q\(^4\) verknüpfte Siliciumatome. Daraus ergibt sich für v174 ca ein Q\(^3\)/Q\(^4\) Verhältnis von 0,46. Durch die hydrothermale Nachbehandlung kommt es zur einer starken Zunahme an Q\(^4\) verknüpften Silicium. Das Q\(^3\)/Q\(^4\) Verhältnis von v174 tc sinkt von 0,46 auf 0,25. Dies steht in Einklang mit den Ergebnissen, die Chen et al. [11] für die hydrothermale Nachbehandlung von rein mesoporösem MCM-41 erhalten haben.

5.2.6 TEM

Die beiden folgenden Abbildungen zeigen TEM-Aufnahmen, die von v216 tc gemacht wurden. Man kann sehr gut die regelmäßige hexagonale Anordnung der Mesoporen erkennen. Außerdem wird deutlich, dass bei
v216 tc keine eigenständige Silicalit-1 Phase existiert. In Abbildung 59 ist die Einheitszelle des MCM-41 mit der Gitterkonstante a_0 und dem d-Abstand d_{100} schematisch eingezeichnet. Wie bereits in Kapitel 5.2.2 beschrieben, wird anhand der TEM-Aufnahme für die Wanddicke des Silicatgerüst von v216 tc ein Wert von ca. 11 Å ermittelt.

5.2.7 Zusammenfassung

Die Synthese von mm-MCM-41(Silicalit-1) konnte reproduzierbar durchgeführt werden. Detaillierte XRD-Messungen zeigen, dass es sich bei mm-MCM-41(Silicalit-1) nicht um ein Kompositmaterial handelt, in dem MCM-41 und Silicalit-1 als getrennte Phasen vorliegen.

Die Untersuchungen zur hydrothermalen Nachbehandlung von mm-MCM-41(Silicalit-1) zeigen, dass diese Methode auf mikro-/mesoporöse Materialien anwendbar ist, ohne dass durch die hydrothermale Nachbehandlung die zeolithischen Baueinheiten zerstört werden. Außerdem treten bei der Nachbehandlung alle Veränderungen auf, die auch bei rein mesoporösem MCM-41 beobachtet werden können. Man findet sowohl eine Vergrößerung der Einheitszelle, als auch eine deutliche Zunahme des Ordnungsgrades des Materials, was sich an der besseren Auflösung der Reflexe im Beugungsdiagramm zeigt. Weiterhin kommt es zu einer Zunahme des Porenradius der Mesoporen und zu einer Abnahme der BET-Oberfläche und des Gesamtporenvolumens. Weiterhin weist hydrothermal nachbehandelter mm-MCM-41(Silicalit-1) eine schärfere Porenradienverteilung der Mesoporen auf als nicht nachbehandelter. Und schließlich nimmt in mm-MCM-41(Silicalit-1) das Q\(^3\)/Q\(^4\)Verhältnisses durch die hydrothermale Nachbehandlung ab.

zeigen jedoch keinerlei Instabilitäten. Ihre mesoporöse Struktur bricht auch nach längerer Lagerung unter Atmosphäre nicht zusammen. Dadurch wird die hydrothermale Nachbehandlung zu einem wichtigen Zwischenschritt in der Synthese von mm-MCM-41(Silicalit-1).

Bei einigen Synthesen von mm-MCM-41(Silicalit-1) wurde die Temperatur, bei der die Kristallkeimlösung gealtert wurde, variiert. So wurde die Kristallkeimlösung 24 Stunden bei 70 und 80 °C gealtert. Es ist anzunehmen, dass die Wachstumsgeschwindigkeit der Keime bei diesen Temperaturen größer ist als bei 20 °C. Dementsprechend wurde erwartet, dass die Wände des Silicatgerüsts dicker werden, was wiederum zu einer größeren Einheitszelle des MCM-41 führen würde. Ein Einfluss der Temperatur, bei der die Kristallkeimlösung gealtert wurde auf die Größe der Einheitszelle konnte jedoch nicht festgestellt werden.
5.3 Charakterisierung von mm-MCM-48(Silicalit-1)

5.3.1 XRD

Alle in Abschnitt 5.2.1 diskutierten Experimente sind mit einem Diffraktometer mit einer Bragg-Brentano Geometrie durchgeführt worden. In Abbildung 60 sind die Beugungsdiagramme von v178 und v186 zu sehen. Die Abbildung fasst die ersten Versuche der Synthese von mm-MCM-48(Silicalit-1) zusammen, die im Rahmen dieser Arbeit durchgeführt wurden.

Durch die Calcinierung wird die Struktur des Materials zumindest teilweise zerstört, wie man dem

Abbildung 61: Vergleich der Beugungsdiagramme von v195a as-made, v195b as-made, v195c as-made (links) und v195a ca, v195b ca und v195c ca (rechts).

Zwar kann im Beugungsdiagramm in Abbildung 62 eine Verschiebung der Reflexe zu kleineren 2θ-Werten als Folge der hydrothermalen Nachbehandlung beobachtet werden, aber die Form und die Anzahl der Reflexe ändert sich nicht. Dies zeigt nochmals, dass v195a keine MCM-48 Struktur besitzt. Welche Struktur v186, v195a, v195b und v195c tatsächlich besitzen ist daher unklar.

Offensichtlich ist mit dem verwendeten Ansatz keine reproduzierbare Synthese von mm-MCM-48(Silicalit-1)
möglich. Deshalb wurde versuchsweise die für die Synthese verwendete Menge an CTAB variiert. Alle anderen Parameter der Synthese blieben unverändert. Bei den bisherigen Synthesen lag das Stoffmengenverhältnis von TEOS zu CTAB bei 1 zu 0,46. Durch die Variation dieses Verhältnisses konnte ermittelt werden, dass für eine erfolgreiche Synthese von mm-MCM-48(Silicalit-1) ein TEOS zu CTAB Verhältnis von 1 zu 0,31 erforderlich ist. Dadurch war schließlich eine erfolgreiche und reproduzierbare Synthese von mm-MCM-48(Silicalit-1) möglich. In Abbildung 63 sind die Beugungsdiagramme von v227 und v228 abgebildet.

Wie man erkennen kann, weisen v227 und bei v228 auch nach der Calcinierung noch die MCM-48 Struktur auf. Der einzige Nachteil des so synthetisierten mm-MCM-48(Silicalit-1) Materials besteht darin, dass es einer relativ kleinen Einheitszelle besitzt. Die Berechnung der Gitterkonstante a_0 von v227 gc und v228 gc, erfolgt, wie in Kapitel 5.1.2.1 beschrieben, mit Hilfe der Methode der kleinsten Fehlerquadrate (engl.: Non Linear Least Square Method). Die auf diese Weise berechneten Gitterkonstanten und die zugehörigen Standardabweichungen σ sind in Tabelle 12 zusammengefasst.

Tabelle 12: Übersicht über die berechneten Gitterkonstanten von v227gc und v228 gc.

<table>
<thead>
<tr>
<th>Probe</th>
<th>a_0 [Å]</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>V227 gc</td>
<td>74,3</td>
<td>1,3</td>
</tr>
<tr>
<td>V228 gc</td>
<td>74,3</td>
<td>1,3</td>
</tr>
</tbody>
</table>

5.4 Charakterisierung von mm-MCM-41(TS-1)

Außerdem werden die Ergebnisse von v180x und v180y diskutiert. Bei diesen Synthese wurde die Kristallkeimlösung 24 Stunden bei 40 °C (v180x) und 24 Stunden bei 60 °C (v180y) gealtert.

5.4.1 XRD

Abbildung 65: Vergleich der Beugungsdiagramme von v175 as-made, v175 ex und v175 ca (links) und v175 as-made, v175hytr, v175hytr-ex und v175 tc (rechts). Die Beugungsdiagramme von v175 as-made, v175 ex und v175 ca zeigen nicht die für MCM-41 typischen (110) und (200) Reflexe. Stattdessen findet sich bei v175 as-made ein breiter und sehr flacher Reflex im Bereich von 3° - 4,5 ° 2θ, und für v175 ca ein breiter und sehr flacher Reflex im Bereich 4° - 6,0 ° 2θ. Das Beugungsdiagramm des hydrothermal nachbehandelten Material zeigt sowohl den (110) und den (200) als auch den (210) Reflex. Außerdem sind die Reflexe, im Vergleich zu dem nicht nachbehandelten Material, zu kleineren 2θ–Werten verschoben.

Man erkennt in Abbildung 65, dass der (100) Peak von v174 as-made sehr breit ist und keine eindeutig zu zuordnenden (110) und (200) Reflexe zu erkennen sind, sondern nur ein breiter und sehr flacher Reflex im
Bereich von 3 - 4,5° 2θ. Anhand der Lage des (100) Reflexes läßt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßig die Mesoporen im MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm.

Auch bei v175 ca findet man einen sehr breiten (100) Reflex und ein breites Signal in dem Bereich, in dem der (110) und der (200) Reflex liegen.

Betrachtet man das hydrothermal nachbehandelte Produkt, so sind hier der (110) und (200) Reflex eindeutig zu erkennen. Dies zeigt, dass der Ordnungsgrad von v175 durch die hydrothermale Nachbehandlung zunimmt. Außerdem ist eine Verschiebung der Reflexe zu kleineren Werten von 2θ zu beobachten.

Man erkennt in Abbildung 66, dass der (100) Peak von v202 as-made sehr breit ist und keine eindeutig zu zuordnenden (110) und (200) Reflexe zu erkennen sind, sondern nur ein breiter und sehr flacher Reflex im Bereich von 3 - 4,5° 2θ. Anhand der Lage des (100) Reflexes läßt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßig die Mesoporen im MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm.

Auch bei v202 ca findet man einen sehr breiten (100) Reflex und ein breites Signal in dem Bereich, in dem der (110) und der (200) Reflex liegen.

Betrachtet man das hydrothermal nachbehandelte Produkt, so sind hier der (110) und (200) Reflex eindeutig

Die Beugungsdiagramme beider Versuchsreihen sind sich sehr ähnlich, lediglich bei der Lage der Reflexe kommt es zu leichten Abweichungen.

<table>
<thead>
<tr>
<th>Probe</th>
<th>a₀ [Å]</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>v175 as-made</td>
<td>47,6</td>
<td>0,8</td>
</tr>
<tr>
<td>v175 ca</td>
<td>39,3</td>
<td>0,5</td>
</tr>
<tr>
<td>v175hytr</td>
<td>54,8</td>
<td>0,7</td>
</tr>
<tr>
<td>v175 tc</td>
<td>52,4</td>
<td>0,9</td>
</tr>
<tr>
<td>v202 as-made</td>
<td>49,2</td>
<td>0,2</td>
</tr>
<tr>
<td>v202hytr</td>
<td>52,8</td>
<td>1,0</td>
</tr>
<tr>
<td>v202 ca</td>
<td>40,2</td>
<td>1,5</td>
</tr>
<tr>
<td>v202 tc</td>
<td>52,7</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Man kann anhand der in Tabelle 13 dargestellten Ergebnisse erkennen, dass das hydrothermal nachbehandelte Material eine erhöhte Stabilität bezüglich der Calcinierung aufweist. So beträgt die Abnahme der Gitterkonstante bei v175 ca 17 %, und bei v202 ca 18,6 %, während sie bei v175 tc mit 4 % und bei v202 tc mit 3,8 % sehr viel geringer ist. Somit zeigt mm-MCM-41(TS-1) diesbezüglich bei der hydrothermalen Nachbehandlung das gleiche Verhalten wie rein mesoporöser MCM-41.

In den Abbildung 67 bis 69 sind die Beugungsdiagramme der Langzeitmessungen von v175 ca, v202 ca und V202 tc abgebildet.

Genau wie für mm-MCM-41(Silicalit-1) wurde bei der Synthese von mm-MCM-41(TS-1) die Temperatur, bei der man die Kristallkeimlösung altern lies variiert. Sie betrug bei v180x 40 °C und bei v180y 60 °C.

Abbildung 70: Vergleich der Beugungsdiagramme von V175, v202 und v180x und v180y

Wie man erkennt, kommt es jedoch auch hier nicht zu einer Vergrößerung der Einheitszelle, was sich anhand der Beugungsreflexe erkennen lässt. So liegt der (100) Reflex von v175 as-made und v180y as-made etwa bei dem gleichen 2θ-Wert, während der von v180x as-made sogar zu einem höheren Wert verschoben ist. Den niedrigsten 2θ-Wert weist v202 as-made auf. Auch bei den calcinierten Materialien liegen die Peakmaxima des (100) Reflexes bei annähernd den gleichen Werten. Das zeigt deutlich, dass die auftretenden Schwankungen der Reflexlagen und damit der Gitterkonstanten nicht auf Änderungen der Temperatur zurückgehen. Genau wie für mm-MCM-41(Silicalit-1) und mm-MCM-48(Silicalit-1) lässt sich keine Abhängigkeit der Größe der Einheitszelle von der Temperatur, bei der man die Kristallkeimlösung altern lies, erkennen.
5.4.2 N\textsubscript{2}-Physisorption / Argon-Physisorption

Abbildung 71: Adsorptionsisotherme von v175 tc. Der Verlauf der Isothermen entspricht für sehr kleine p/p\textsubscript{0}-Werte dem einer Typ I Isotherme, wie sie für mikroporöse Materialien typisch ist. Bei höheren p/p\textsubscript{0}-Werten gleicht der Verlauf der Isothermen dem einer Typ IV Isotherme und zeigt auch die für mesoporöse Materialien typische Hystereseschleife.

Abbildung 72: Vergleich der Adsorptionsisotherme von v202 ca (links) und v202 tc (rechts). Durch die hydrothermale Nachbehandlung verändert sich die Form der Isothermen. Der Anstieg der Isotherme von v202 tc ist bei kleinen p/p\textsubscript{0}-Werten flacher als bei v202 ca. Der Verlauf beider Isothermen entspricht für sehr kleine p/p\textsubscript{0}-Werte dem einer Typ I Isotherme, wie sie für mikroporöse Materialien typisch ist. Bei höheren p/p\textsubscript{0}-Werten gleicht der Verlauf dann dem einer Typ IV Isotherme und zeigt auch die für mesoporöse Materialien typische Hystereseschleife, wobei diese für v202 ca nur sehr schwach ausgeprägt ist.

Die Messungen der N\textsubscript{2}-Adsorptionsisothermen von v202 ca und v202 tc wurden nicht wie die von v216 ca und v216 tc an einem Autosorb-1 MP, sondern an einem Nova 4200e der Firma Quantachrome durchgeführt.
Dadurch war es möglich die Messungen bei relativ kleinen \(\frac{p}{p_0} \)-Werten zu beginnen. Der kleinste \(\frac{p}{p_0} \)-Wert liegt im Bereich von etwa \(10^{-5} \). Man kann erkennen, dass beide Isothermen im Bereich solch kleiner Drücke sehr stark ansteigen. Dieses Verhalten entspricht eher einer Typ I Isotherme, wie sie für mikroporöse Materialien typisch ist. Bei höheren \(\frac{p}{p_0} \)-Werten gleicht der Verlauf der Isothermen dann wieder dem einer Typ IV Isotherme und zeigt auch die für mesoporöse Materialien typische Hystereseschleife, wobei diese für \(v202 \) ca nur sehr schwach ausgeprägt ist. Durch die hydrothermale Nachbehandlung verändert sich die Form der Isothermen. Bei kleinen \(\frac{p}{p_0} \)-Werten ist der Anstieg der Isotherme bei \(v202 \) tc flacher als bei \(v202 \) ca. Die Isothermen von \(v175 \) tc und \(v202 \) tc ähneln sich sehr stark. So weist \(v175 \) tc lediglich eine etwas stärker ausgeprägte Hystereseschleife auf. Aus den gemessenen Daten wurde die BET-Oberfläche, die Porenradienverteilung und das Porenvolumen bestimmt. Die Porenradienverteilungen wurden mittels der NLDFT-Methode berechnet. Die Porenradienverteilungen wurden in den Abbildungen 73 und 74 dargestellt.

Abbildung 73: Porenradienverteilung von \(v175 \) tc

Tabelle 14: Übersicht über die BET Oberfläche, den mittleren Porenradius und das Porenvolumen von v175 tc v202 ca und v202 tc.

<table>
<thead>
<tr>
<th>Probe</th>
<th>BET-Oberfläche [m²/g]</th>
<th>Mittlerer Porenradius [Å]</th>
<th>Gesamtporenvolumen [cm³/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>v175 tc</td>
<td>949</td>
<td>21,25</td>
<td>0,95</td>
</tr>
<tr>
<td>v202 ca</td>
<td>1215</td>
<td>16,25</td>
<td>0,89</td>
</tr>
<tr>
<td>v202 tc</td>
<td>990</td>
<td>21,25</td>
<td>0,95</td>
</tr>
</tbody>
</table>

Wie jedoch die Ergebnisse der hydrothermalen Nachbehandlung von MCM-48 zeigen, kann es bei den nachbehandelten Materialien durchaus zu einer Zunahme des Porenvolumens kommen (siehe Abschnitt 5.1.2.3). Die genauen Ursachen, warum das Porenvolumen durch die Nachbehandlung sowohl zu als auch abnehmen kann, sind noch nicht bekannt.

Berechnet man für v202 ca die Wanddicke aus der Differenz von Gitterkonstante und Porenradius, so erhält man eine Wanddicke von 8 Å. Eine solche Wanddicke ist kristalchemisch aber nicht sinnvoll (siehe auch die Diskussion zur Bestimmung der Wanddicke in Abschnitt 5.1.1.3). Für v175 tc und v202 tc errechnen sich auf diese Weise Wanddicken von jeweils 10 Å. Diese Werte sind zwar kristalchemisch sinnvoll, aber eine Auswertung der TEM-Aufnahmen von v202 tc zeigt, dass die Wanddicke ca. 14 Å beträgt (siehe Abschnitt 5.4.9). Möglicherweise überschätzt die NLDFT-Methode hier den Porenradius der Mesoporen, so dass man zu große Poren und damit eine zu dünne Porenwand erhält. Auch die Messung der Gitterkonstanten ist mit einem gewissen Fehler behaftet, so dass auch hier die Ursache für die zu geringen Wanddicken liegen kann.

Abbildung 76: Porenradienverteilung von v216 tc für Porenradien von 3 - 20 Å. Die Mikroporenverteilung zeigt ein relativ scharfes Maximum bei etwa 8,5 Å.
Tabelle 15: Übersicht über die aus der Ar-Physisorption berechneten Werte für die BET-Oberfläche, den mittleren Porenradius, und das Porenvolumen von v202tc.

<table>
<thead>
<tr>
<th>Probe</th>
<th>BET-Oberfläche [m²/g]</th>
<th>Mittlerer Porenradius [Å]</th>
<th>Mikroporenvolumen [cm³/g]</th>
<th>Gesamtporenvolumen [cm³/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V202 tc</td>
<td>684</td>
<td>20,50</td>
<td>0,005</td>
<td>0,73</td>
</tr>
</tbody>
</table>

Die Mikroporenverteilung zeigt ein relativ scharfes Maximum bei etwa 8,5 Å. Zusätzlich erkennt man im unteren Mesoporenbereich eine Schulter, die bei ca. 15 Å liegt. Das Mikroporenvolumen beträgt 0,005 cm³/g. Auch für v202 tc wird eine kurze Plausibilitätsbetrachtung des Mikroporenvolumens angestellt.

Man kann davon ausgehen, dass die Dichte von mm-MCM-41(TS-1) in etwa der des calcinierten mesoporösen MCM-41 entspricht. Sie liegt damit bei etwa 0,97 g/cm³ [60]. Betrachtet man nun 1 g mm-MCM-41(TS-1) so entspricht dies einem Volumen von 1,03 cm³. Dieses Volumen kann man nun in das Volumen der Porenwände und das Volumen der Mesoporen aufteilen. Wie sich aus der Argonphysisorption ergibt, beträgt das Mesoporenvolumen von v202 tc 0,725 cm³/g. Subtrahiert man dieses von den 1,03 cm³ so verbleibt ein Restvolumen von 0,305 cm³. Diese stellt das Volumen der Wand mit den darin enthaltenen Mikroporen dar.

Zeolithe vom MFI Gerüststrukturtyp weisen eine Porosität von etwa 10 % auf. Das heißt, dass einem Volumen der Porenwand von 0,305 cm³ ein Mikroporenvolumen von 0,0305 cm³ entspricht. Eine Porosität von 10 % gilt aber nur für einen voll ausgebildeten Zeolithen. Für die zeolithischen Baueinheiten, aus denen das Silicatgerüst von mm-MCM-41(TS-1) aufgebaut ist, kann man von einer geringeren Porosität ausgehen. Geht man von 5 % statt von 10 % aus, ergibt sich ein Mikroporenvolumen von etwa 0,015 cm³. Damit liegt man um den Faktor 3 über dem Wert, der aus der Physisorptionsmessung stammt. Ein Mikroporenvolumen von 0,005 cm³ kann also als plausibel angesehen werden. Auch ist die Porenradienverteilung der Mikroporen relativ scharf, so dass sich das Mikroporenvolumen verhältnismäßig genau bestimmen läßt.

Die Ergebnisse der Argon-Physiosorptionsmessung zeigen also, dass in mm-MCM-41(TS-1) Mikroporen mit einem Porenradius von etwa 8,5 Å vorliegen. Bedenkt man, dass die Wanddicke in v216 tc etwa 14 Å und die Wanddicke des Silicatgerüsts mindestens 10 Å betragen, ist davon auszugehen, dass die Mikroporen durch die komplette Wand des Silicatgerüsts verlaufen, und damit zwei Mesoporen miteinander verbinden. Wäre dies nicht der Fall, könnte die Mikropore nur maximal 4 Å in die Wand hineinreichen. Bei einer Länge von 4 Å und einem Durchmesser von 17 Å kann man allerdings nicht mehr von einer Mikropore sprechen. Dies entspräche eher einer Ausbuchtung in der Wand. Es darf aber daran gezweifelt werden, dass eine solche Ausbuchtung bei der Physisorption die gleichen Merkmale wie eine Mikropore zeigt. Auch die Ergebnisse der Thermoanalyse (siehe Abschnitt 5.4.3) würden sich mit einer solchen Ausbuchtung nicht erklären lassen.

Weder Wang et al. [26] und Xiao et al. [27] machen eine Aussage über die Größe der Mikroporen, die in den von ihnen hergestellten mm-MCM-41(TS-1) Materialien vorliegen. Sie ermitteln das Mikroporenvolumen durch
eine t-Plot-Auftragung aus den N\textsubscript{2}-Physisorptionsmessungen. Dabei erhalten Wang et al. für ihre Materialien (JQW-3 und JQW-4) ein Mikroporenvolumen von 0,04 bis 0,06 cm3/g, während Xiao er al. für ihre Materialien (MTS-5 und MTS-9) ein Mikroporenvolumen von 0,05 bis 0,07 cm3/g erhalten. Damit weisen diese Materialien Mikroporenvolumina auf, die etwa um den Faktor 10 über dem von v202 tc liegen.

Genau wie bei mm-MCM-41(Silicalit-1), muss auch bei mm-MCM-41(TS-1) die errechnete BET-Oberfläche kritisch betrachtet werden, da bei deren Berechnung in Anwesenheit von Mikroporen ein zu großer Wert erhalten werden kann.

5.4.3 Thermoanalyse

Abbildung 77: Vergleich der Thermoanalyse von v202 as-made (links) und v202hytr (rechts).
230 – 260 °C aufweist, die durch die Überlagerung zweier exothermer Signale zustande kommt. Bei v202hytr sind diese beiden Signale offensichtlich besser aufgelöst, was bedeutet, dass die Prozesse, die zum Entstehen der beiden exothermen Signale führen, bei anderen Temperaturen ablaufen als bei v202 as-made. Genau wie bei v174 kommt es bei v202 durch die hydrothermale Nachbehandlung zu Veränderungen der Porenstruktur (siehe Abbildung 74 Abschnitt 5.4.2). So erhält man eine schärferer Porenradienverteilung und einen größeren mittleren Porenradius. Diese Veränderungen haben einen Einfluss auf die Temperatur der Prozesse, die bei der thermischen Zersetzung des CTA⁺ ablaufen.

mm-MCM-41(Silicalit-1), mit der Größe der der zeolithischen Baueinheiten in mm-MCM-41(TS-1) erklären. Wie bereits in Kapitel 5.2.3 ausgeführt, verschiebt sich die Zersetzungstemperatur des TPA⁺-Kations bei Zeolithen mit abnehmender Partikelgröße zu kleineren Temperaturen. Da die zeolithischen Baueinheiten in mm-MCM-41(TS-1) sehr klein sind, ist eine Verschiebung der Zersetzungstemperatur zu 304 °C hin durchaus möglich.

Auffällig ist ein zweiter breiter exothermer Peak in der DTA-Kurve in einem Temperaturbereich von 350 °C bis 420 °C. Parallel zu diesem exothermen Prozess tritt ein Gewichtsverlust von 1,4 mg ein. Dies entspricht einem Gewichtsverlust von 7,4 %.

5.4.4 AAS/ICP-OES

Tabelle 16: Titangehalt der unterschiedlichen mm-MCM-41(TS-1) Materialien

<table>
<thead>
<tr>
<th>Probe</th>
<th>wt.% Titan</th>
<th>Si/Ti Verhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>V175 as-made</td>
<td>0,58</td>
<td>-</td>
</tr>
<tr>
<td>V175 ca</td>
<td>1,39</td>
<td>56</td>
</tr>
<tr>
<td>V175hytr</td>
<td>0,85</td>
<td>-</td>
</tr>
<tr>
<td>V175 tc</td>
<td>1,50</td>
<td>52</td>
</tr>
<tr>
<td>V202 as-made</td>
<td>0,50</td>
<td>-</td>
</tr>
<tr>
<td>V202 ca</td>
<td>1,27</td>
<td>62</td>
</tr>
<tr>
<td>V202 tc</td>
<td>1,12</td>
<td>70</td>
</tr>
<tr>
<td>V215 as-made*</td>
<td>0,70</td>
<td>-</td>
</tr>
<tr>
<td>V215 ca*</td>
<td>1,97</td>
<td>39</td>
</tr>
<tr>
<td>V215 tc*</td>
<td>2,04</td>
<td>38</td>
</tr>
</tbody>
</table>

Der Titangehalt der calcinierten Proben liegt im Bereich von 1,3 bis 2 wt%. Diese Schwankungen sind durch die Synthese bedingt. Die Unterschiede im Titangehalt zwischen den hydrothermal nachbehandelten und den nicht nachbehandelten Proben sind nach der Calcinierung vernachlässigbar.

5.4.5 UV-Vis-Spektroskopie

Bei allen durchgeführten Messungen des UV-Vis-Spektrums, wurden die untersuchten Materialien vor der Messung nicht ausgeheizt. Dies lag daran, dass das verwendete Lambda 9 UV-Vis-Spektrometer der Firma
Perkin Elmer nur eine offene Messzelle besitzt. Daher können die Proben beim Einbau in die Messzelle und während der Messung Wasser aus der sie umgebenden Luft anlagern. Eine Ausheizen der Proben vor der Messung wäre daher sinnlos. Abbildung 79 zeigt die UV-Vis-Spektren von v175 ca und v175 tc. Zum Vergleich wurde zusätzlich noch das UV-Vis-Spektrum von TS-1 gemessen. Die UV-Vis-Spektren der anderen mm-MCM-41(TS-1) Materialien sind im Anhang abgebildet (Abbildung 133 (v202) und Abbildung 132 (v215)).

Die Absorptionspeaks von v175 ca und v175 tc ähneln in Lage und Form sehr stark dem Absorptionspeak von TS-1, daher kann man schlussfolgern, dass sich das Titan in v175 ca und v175 tc in einer ähnlichen koordinativen Umgebung befindet wie im TS-1. Somit kann man annehmen, dass das Silicatgerüst von v175 ca und v175 tc aus zeolithische Baueinheiten des TS-1 aufgebaut ist. Da alle drei Materialien vor der Messung nicht ausgeheizt wurden, ist davon auszugehen, dass das Titan in allen als Mischung aus [TiO$_4$]-Tetraedern und [TiO$_4$(H$_2$O)]-Oktaedern vorliegt.

Vergleicht man die UV-Vis-Spektrren von v175 ca und v175 tc mit den Arbeiten von Wang et al. [26] und Xiao et al. [27], so zeigen sich deutliche Unterschiede bezüglich der Lage der Absorptionsmaxima. Jedoch machen die Autoren keine Angaben darüber, ob ihre Materialien vor der Messung ausgeheizt wurden. Die von
Wang et al. erzeugten Materialien mit den Bezeichnungen JQW-3 und JQW-4 zeigen jeweils bei 218 nm ein breites Absorptionsmaximum im UV-Vis Spektrum. Der im Vergleich dazu gemessene TS-1 weist ein Maximum von 216 nm auf. Das von Xiao et al. erzeugte MTS-5 besitzt ein Maximum im UV-Vis-Spektrum von ebenfalls 218 nm. Jedoch fehlt hier die Vergleichsmessung von TS-1, was die Vergleichbarkeit des Spektrums reduziert. Das bedeutet, dass allein der Vergleich der UV-Vis-Spektren von unterschiedlich synthetisiertem mm-MCM-41(TS-1) nicht ausreicht. Ein Vergleich mit dem UV-Vis-Spektrum von TS-1, dass unter den gleichen Bedingungen wie die mm-MCM-41(TS-1) Materialien gemessen wurde, ist unabhängig.

5.4.6 IR-Spektroskopie

Bei TS-1 tritt im IR-Spektrum eine charakteristische Bande bei etwa 960 cm\(^{-1}\) auf, die darauf zurückzuführen ist, dass das Titan tetraedrisch von den Sauerstoffatomen des Silicatgerüsts koordiniert vorliegt. Das Auftreten dieser Bande im IR-Spektrum von mm-MCM-41(TS-1) und mm-MCM-48(TS-1) Materialien ist ein Hinweis darauf, dass das Titan in der selben koordinativen Umgebung vorliegt wie im TS-1.

Wie bereits in Kapitel 3.7 beschrieben, ist dies jedoch kein eindeutiger Hinweis. Die im uncalcinierten Material immer vorhandenen Silanolgruppen können ebenfalls zu Banden bei 960 cm\(^{-1}\) führen. Auch bei calciniertem mm-MCM-41(Silicalit-1) tritt diese Bande auf, obwohl diese Materialien kein Titan enthalten (siehe Abbildung 55 und 56 in Abschnitt 5.2.4). Auch bei rein mesoporösem MCM-41 kann das Auftreten dieser Bande beobachtet werden. Dies ist in Abbildung 80 gut zu erkennen.

Abbildung 80: IR-Spektrum von calciniertem MCM-41. Obwohl diese Material kein Titan enthält, kann deutlich das Auftreten einer Bande bei 964 cm\(^{-1}\) beobachtet werden.

Hier sind im MCM-41 nach der Calcinierung noch Silanolgruppen vorhanden, die für das Entstehen einer Bande bei 964 cm\(^{-1}\) verantwortlich sind. Das bedeutet aber im weiteren, dass die IR-Spektroskopie für die Charakterisierung von mm-MCM-41(TS-1) nur eine untergeordnete Rolle spielen kann. Bei Abwesenheit der Bande kann man ausschließen, dass das Titan tetraedrisch von den Sauerstoffatomen des Silicatgerüsts
koordiniert vorliegt, während aus ihrer Anwesenheit keine eindeutig positive Schlussfolgerung bezüglich der Titan Koordination möglich ist. In Abbildung 81 und 82 sind die IR-Spektren von v175 as-made, V175hytr, v175 ca und v175 tc abgebildet.

Abbildung 81: Vergleich der IR-Spektren von v175 as-made und v175hytr. Rechts ist der Bereich von 2000 - 400 cm⁻¹ noch einmal vergrößert dargestellt.

Abbildung 82: Vergleich der IR-Spektren von v175 ca und v175 tc. Rechts ist der Bereich von 2000 - 400 cm⁻¹ noch einmal vergrößert dargestellt.

Man erkennt bei allen vier Proben ein Bande bei etwa 560 cm⁻¹. Sie ist bei v175 ca und v175 tc zwar schwächer ausgeprägt, aber noch zu erkennen, wobei sie für v175 tc eine geringere Intensität als für v175 ca aufweist. Da diese Bande den Gerüstschwingungen von zeolithischen 5 und 6 Ringen zugeordnet wird, ist ihr Auftreten ein Hinweis, dass in den untersuchten Materialien zeolithische Baueinheiten vorhanden sind.

Man erkennt, dass bei v175 as-made und bei v175hytr eine Bande im Bereich von 960 cm⁻¹ vorliegt, wobei ihre Intensität allerdings gering ist.

Nach der Calcinierung der Materialien ist die Bande bei 960 cm⁻¹ bei v175 ca relativ stark ausgeprägt, während sie bei v175 tc nur als eine schwach ausprägte Schulter vorhanden ist. Für v175 ca liefert die
IR-Spektroskopie somit zum einen einen Hinweis auf das Vorhandensein von zeolithischen Baueinheiten, und zum anderen darauf, dass das Titan tetraedrisch von den Sauerstoffatomen des Silicatgerüsts koordiniert ist. Für v175 tc kann die schwächere Ausprägung der beiden charakteristischen Banden bei 560 cm\(^{-1}\) und 960 cm\(^{-1}\) so interpretiert werden, dass die hydrothermale Nachbehandlung eine Auswirkung auf die Koordinationszahl des Titans in den zeolithischen Baueinheiten von mm-MCM-41(TS-1) hat. Aber auch eine anderer Interpretation wäre möglich. Wie das IR-Spektrum von mesoporösem MCM-41 in Abbildung 78 zeigt, können auch nach der Calcinierung vorhandene Silanolgruppen die Entstehung einer Bande im Bereich von 960 cm\(^{-1}\) verursachen. Es besteht also die Möglichkeit, dass v175 ca im Gegensatz zu v175 tc noch Silanolgruppen enthält, die ebenfalls eine Bande im IR-Spektrum erzeugen. Diese würde sich mit der Bande, die durch das tetraedrisch von den Sauerstoffatomen des Silicatgerüsts koordinierte Titan erzeugt wird, überlagern, so dass man für v175 ca eine intensivere Bande bei 960 cm\(^{-1}\) erhält als für v175 tc. In Abbildung 83 und 84 sind die IR-Spektren von v202 as-made, v202hytr, v202 ca und v202 tc abgebildet.

Abbildung 83: Vergleich der IR-Spektren von v202 as-made und v202hytr. Rechts ist der Bereich von 2000 - 400 cm\(^{-1}\) noch einmal vergrößert dargestellt.

Abbildung 84: Vergleich der IR-Spektren von v202 ca und v202 tc. Rechts ist der Bereich von 2000 - 400 cm\(^{-1}\) noch einmal vergrößert dargestellt.

5.4.7 XAS

In Abbildung 85 sind die XANES-Spektren von v175 tc, v175 ca TS-1, Rutil und elementarem Titan, in Form von Titanfolie, zu sehen. Dabei ist in den folgenden Abbildungen die Probe v175 ca als v175c bezeichnet. Abbildung 86 zeigt die Lage und die normalisierte Intensität der Vorkantenpeaks von v175 tc, v175 ca und TS-1. Dabei bedeutet normalisierte Intensität, dass die Intensität der Absorptionskante gleich eins gesetzt wird, und man die Intensität des Vorkantenpeaks dazu ins Verhältnis bringt.

112
Anhand der XANES-Spektren und der Vorkantenpeaks kann man ausschließen, dass in den Proben v175ca und v175tc Titan in Form von Rutil vorliegt. Zwischen v175c und v175tc ist kein Unterschied erkennbar, die beiden Spektren sind nahezu identisch. Allerdings weichen die Vorkantenpeaks von v175 ca und v175 tc bezüglich der Lage und der Intensität deutlich von dem Vorkantenpeak von TS-1 ab. Auf der X-Achse sind sie um 0,1 eV zu höheren Energien verschoben und ihre Peakhöhe ist mit nur 0,28 deutlich geringer als die des TS-1 Vorkantenpeaks. Der Zusammenhang zwischen der Lage und der Intensität des Vorkantenpeaks und der Koordinationszahl des Titans ist für v175ca in Abbildung 87 zusehen. Dadurch, dass die Lage und die Höhe des Vorkantenpeaks für v175 ca und v175 tc nahezu identisch ist, gilt die ermittelte Koordinationszahl von v175 ca auch für v175 tc.
Abbildung 87: Vergleich der Koordinationszahl von Ti als Funktion der Peaklage und der normalisierten Intensität. Im Vergleich sind die Daten von v175 ca und TS-1 eingegeben.

Abbildung 88: Vergleich der Lage und der normalisierten Intensität der Vorkantenpeaks von v175 tc (links), v202 ca (Mitte) und v202 tc (rechts).

Abbildung 89: Vergleich der Koordinationszahl von Titan als Funktion der Peaklage und der normalisierten Intensität. Im Vergleich sind die Daten von v175 ca, v202 ca, v202 tc und TS-1 eingetragen.

Schließlich kann man aus der Tatsache, dass die Vorkantenpeaks von V202 ca und v202 tc in Lage und Intensität fast identisch sind, die Schlussfolgerung ziehen, dass die hydrothermale Nachbehandlung keinen Einfluss auf die zeolithischen Baueinheiten hat. Damit kann mittels der XANES-Spektroskopie erstmals eine sehr präzise Analyse der Titankoordination des mm-MCM-41(TS-1) erstellt werden. Damit hebt sie sich von der Charakterisierung durch die UV-Vis-Spektroskopie und die IR-Spektroskopie ab. Auch eine relativ eindeutige Beurteilung der Auswirkung der hydrothermalen Nachbehandlung auf die zeolithischen Baueinheiten ist damit möglich. Soweit bekannt ist, wurde die Koordinationszahl des Titans in mm-MCM-41(TS-1) Materialien bisher noch nicht mittels XANES-Messungen bestimmt. Diese Ergebnisse stellen also in dieser Hinsicht ein Novum dar.
5.4.8 29Si-MAS-NMR

Abbildung 90 zeigt die 29Si-HPDEC-MAS-NMR Spektren von v202 ca und V202 tc.

Im Gegensatz zu v174 ca und v174 tc (siehe Abschnitt 5.2.5), kann für v202 ca und v202 tc kann das Q^3/Q^4-Verhältnis nicht einfach durch Integration der Peakflächen ermittelt werden. Dies hat folgenden Grund:

Im Silicalit-1 ist jedes Q^4 verknüpfte Siliciumatom über je ein Sauerstoffatom mit vier anderen Siliciumatomen verbunden. Man kann hierfür auch die Kurzschreibweise $Q4(4Si)$ verwenden. Im TS-1 hingegen ist ein Teil der Siliciumatome durch Titanatome substituiert. Dadurch ist ein Teil der Q^4 verknüpften Siliciumatome über je eine Sauerstoffatome mit drei Siliciumatomen und einem Titanatom verbunden. Man kann hierfür die Kurzschreibweise $Q4(3Si + 1Ti)$ verwenden. Dies führt dazu, dass das Signal des Siliciumatoms etwa um 10 ppm zu kleineren ppm-Werten verschoben wird, und es dadurch dem eines Q^3 verknüpften Siliciumatoms entspricht. Somit wird die Intensität des Q^3 Signals erhöht, und die des Q^4 Signals erniedrigt. Daher kann aus der Fläche unter dem Signal, nicht auf die tatsächliche Menge an Q^3 und Q^4 verknüpften Siliciumatomen geschlossen werden kann.

5.4.9 TEM

5.4.10 Untersuchung der Kristallkeimlösung von mm-MCM-41(TS-1)

Weiterhin wurde getestet, ob aus der für die Synthese von mm-MCM-41(TS-1) verwendeten Kristallkeimlösung makroskopischer TS-1 synthetisiert werden kann. Dazu wurde ein Teil der Kristallkeimlösung in einen Autoklaven gefüllt, und bei 160°C für 10 Stunden im Ofen erhitzt. Das entstandene Material wurde mittels XRD und IR-Spektroskopie untersucht. Dabei konnte festgestellt werden, dass tatsächlich TS-1 entstanden ist. In Abbildung 93 wird das Beugungsdiagramm des so entstandenen Zeolithen
mit dem von industriell hergestellten TS-1 verglichen.

Abbildung 93: Vergleich der Beugungsdiagramme eines industriell hergestellten TS-1 und eines aus einer Kristallkeimlösung, wie sie auch für die Synthese von mm-MCM-41(TS-1) verwendet wird, synthetisiertem TS-1.

Wie man sehen kann, ist es möglich aus der verwendeten Kristallkeimlösung TS-1 zu synthetisieren. Auch im IR-Spektrum sind keine Unterschiede zwischen dem industriell hergestellten TS-1 und dem aus der Kristallkeimlösung erzeugten zu erkennen, da die Banden beider Zeolithe nahezu identische sind.

Abbildung 94: Vergleich der IR-Spektren eines industriell hergestelltem TS-1 und eines aus einer Kristallkeimlösung, wie sie auch für die Synthese von mm-MCM-41(TS-1) verwendet wird, synthetisiertem TS-1.

Dies zeigt, dass aus der Kristallkeimlösung wie sie für die Synthese von mm-MCM-41(TS-1) verwendet wird, makroskopischer TS-1 erzeugt werden kann, der sich nicht signifikant von einem industriell erzeugten Zeolith unterscheidet. Dies ist ein deutlicher Hinweis darauf, dass die verwendete Kristallkeimlösung auch tatsächlich zeolithische Baueinheiten des TS-1 enthält.
5.4.11 Katalyse

Als mm-MCM-41(TS-1) Materialien werden v175 ca und v175 tc getestet. Hierbei soll zusätzlich festgestellt werden, ob die hydrothermale Nachbehandlung von mm-MCM-41(TS-1) Einfluss auf die katalytische Aktivität des Materials hat.

5.4.11.1 Epoxidierung in Methanol

Als erstes sollen die Ergebnisse der Epoxidierung von 1-Hexen und Cyclohexen in Methanol diskutiert werden. Die gebildeten Epoxide sind unter den Reaktionsbedingungen nicht stabil, und werden von H\textsubscript{2}O oder Methanol in Cyclohexandiol oder Methoxy-Cyclohexanol überführt. Als mögliche Nebenreaktion kann es zur allylischen Oxidation der Alkene kommen.

Tabelle 17: Ergebnisse der Epoxidierung von Cyclohexen mit H$_2$O$_2$ in Methanol (A = Ausbeute, S = Selektivität)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Umsatz [%]</th>
<th>Epoxid Derivate</th>
<th>Allylische Oxidationsprodukte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A [%]</td>
<td>S [%]</td>
<td>A [%]</td>
</tr>
<tr>
<td>v175 ca</td>
<td>47</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>v175 tc</td>
<td>47</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>Ti/MCM-41</td>
<td>26</td>
<td>0,5</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabelle 18: Titangehalt bzw. das Silicium zu Titan Verhältnis der für die Epoxidierung eingesetzten Materialien

<table>
<thead>
<tr>
<th>Probe</th>
<th>Titangehalt [wt%]</th>
<th>Si/Ti Verhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>v175 ca</td>
<td>1,39</td>
<td>56</td>
</tr>
<tr>
<td>v175 tc</td>
<td>1,50</td>
<td>52</td>
</tr>
<tr>
<td>Ti/MCM-41</td>
<td>2,20</td>
<td>35</td>
</tr>
<tr>
<td>TS-1</td>
<td>2,07</td>
<td>33</td>
</tr>
</tbody>
</table>

Zum Vergleich wurde die Epoxidierung von Cyclohexen in Methanol auch mit TS-1 als Katalysator durchgeführt. Die Ergebnisse sind in Tabelle 19 zusammengefasst.
Tabelle 19: Ergebnisse der Epoxidierung von Cyclohexen mit H₂O₂ in Methanol (A = Ausbeute, S = Selektivität)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Umsatz [%]</th>
<th>Epoxide Derivate</th>
<th>Produkte der allylischen Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A [%]</td>
<td>S [%]</td>
<td>A [%]</td>
</tr>
<tr>
<td>TS-1</td>
<td>4</td>
<td>0,2</td>
<td>6</td>
</tr>
</tbody>
</table>

Wie man sieht, ist der Umsatz an Cyclohexen bei TS-1 deutlich geringer als bei den mikro-/mesoporösen Materialien oder Ti/MCM-41. Die Selektivitäten sind jedoch für die Epoxidierung deutlich höher als für die allylische Oxidation. Der Grund für den geringen Umsatz liegt, wie bereits ausgeführt, in der Größe der Mikroporen des Zeolithen. Diese sind für das sterisch anspruchsvolle Cyclohexenmolekül zu klein, um einen schnellen Stofftransport zu ermöglichen.

5.4.11.2 Epoxidierung in Decan

Bei der Umsetzung von Cyclohexen in Dean mit TBHP tritt keine Konkurrenzkaction wie die allylische Oxidation auf. In Tabelle 20 sind die Ergebnisse der Epoxidierung von Cyclohexen in Methanol dargestellt. Zusätzlich zu den mikro-/mesoporösen Materialien wurde auch hier die Reaktion auch mit konventionellen, rein mesoporösem Ti/MCM-41 durchgeführt.

122
Tabelle 20: Ergebnisse der Epoxidierung von Cyclohexen mit TBHP in Decan (A = Ausbeute, S = Selektivität)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Umsatz [%]</th>
<th>Selektivität [%]</th>
<th>Selektivität [%]</th>
<th>Selektivität [%]</th>
<th>Unbekanntes Nebenprodukt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A [%]</td>
<td>S[%]</td>
<td>A [%]</td>
<td>S[%]</td>
</tr>
<tr>
<td>v175 ca</td>
<td>35,0</td>
<td>32,2</td>
<td>92</td>
<td>1,4</td>
<td>4</td>
</tr>
<tr>
<td>V175 tc</td>
<td>37,0</td>
<td>31,8</td>
<td>86</td>
<td>2,2</td>
<td>6</td>
</tr>
<tr>
<td>Ti/MCM-41</td>
<td>5,7</td>
<td>5,4</td>
<td>95</td>
<td>0,3</td>
<td>5</td>
</tr>
</tbody>
</table>

5.4.12 Zusammenfassung

Die Untersuchungen zur hydrothermalen Nachbehandlung von mm-MCM-41(Silicalit-1) zeigen, dass diese Methode auf mikro-/mesoporöse Materialien anwendbar ist, ohne dass durch die hydrothermale Nachbehandlung die zeolithischen Baueinheiten zerstört werden. Außerdem treten bei der Nachbehandlung alle Veränderungen auf, die auch bei rein mesoporösem MCM-41 beobachtet werden können. Man findet sowohl eine Vergrößerung der Einheitszelle, als auch eine deutliche Zunahme des Ordnungsgrades des Materials, was sich an der besseren Auflösung der Reflexe im Beugungsdiagramm zeigt. Weiterhin kommt es zu einer Zunahme des Porenradius der Mesoporen und zu einer Abnahme der BET-Oberfläche. Das Gesamtporenvolumen nimmt durch die hydrothermale Nachbehandlung zu.

Weiterhin weist hydrothermal nachbehandelter mm-MCM-41(TS-1) eine schärfere Porenradienverteilung der Mesoporen auf als nicht nachbehandelter.

Es hat sich gezeigt, dass die IR-Spektroskopie nicht geeignet ist, um eine definitive Aussage über die
Koordinationszahl des Titans zu machen.

Bei einigen Synthesen von mm-MCM-41(TS-1) wurde die Temperatur, bei der die Kristallkeimlösung gealtert wurde, variiert. So wurde die Kristallkeimlösung 24 Stunden bei 40 und 60 °C gealtert. Es ist anzunehmen, dass die Wachstumsgeschwindigkeit der Keime bei diesen Temperaturen größer ist als bei 20 °C. Dementsprechend wurde erwartet, dass die Wände des Silicatgerüsts dicker werden, was wiederum zu einer größeren Einheitszelle des MCM-41 führen würde. Ein Einfluss der Temperatur, bei der die Kristallkeimlösung gealtert wurde auf die Größe der Einheitszelle konnte jedoch nicht festgestellt werden.
5.5 Charakterisierung von mm-MCM-48(TS-1)

Im den folgenden Abschnitten werden die Ergebnisse der Synthese von mm-MCM-48(TS-1) präsentiert und diskutiert. Die verschieden durchgeführten Synthesesansätze werden mit dem Buchstaben v und einer Nummer gekennzeichnet. Für die extrahierten Materialien wird das Kürzel ex verwendet und für die extrahierten und calcinierten Materialien das Kürzel „ca“. Im Folgenden wird auf die Ergebnisse von v179, v182, v183, v229 und v230 eingegangen.

5.5.1 XRD

Abbildung 95: Beugungsdigramm von v179. Das Beugungsdigramm weist nicht die für die MCM-48 Struktur typischen Reflexe auf.

Durch die Calcinierung wird die Struktur des Materials zumindest teilweise zerstört. Wie man im Beugungsdigramm erkennen kann. Der Reflex von v179 ca ist sehr breit und sein Maximum ist schwer abzuschätzen. Er liegt ungefähr bei 2,4 °. Das würde bedeuten, dass bei v179 die Einheitszelle durch die

Da die Synthese von mm-MCM-48(Silicalit-1) durch eine Veränderung der eingesetzten Menge an CTAB schließlich doch noch gelungen ist, wurde auch für die Synthese von mm-MCM-48(TS-1) das TEOS zu CTAB Verhältnis auf 1 zu 0,31 geändert. In Abbildung 96 sind die Beugungsdiagramme von v229 as-made und v230 as-made abgebildet.

Die Berechnung der Gitterkonstante a_0 von v229 ca, v229 gc, v230 ca und v230 gc erfolgt, wie in Kapitel 5.1.2.1 beschrieben, mit Hilfe der Methode der kleinsten Fehlerquadrate (engl.: Non Linear Least Square Method). Die auf diese Weise berechneten Gitterkonstanten und die zugehörigen Standardabweichungen σ sind in Tabelle 21 zusammengefasst.

<table>
<thead>
<tr>
<th>Probe</th>
<th>a_0 [Å]</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>V229 ca</td>
<td>80,4</td>
<td>0,6</td>
</tr>
<tr>
<td>V229 gc</td>
<td>78,2</td>
<td>0,4</td>
</tr>
<tr>
<td>V230 ca</td>
<td>78,5</td>
<td>0,9</td>
</tr>
<tr>
<td>V230 gc</td>
<td>78,5</td>
<td>1,0</td>
</tr>
</tbody>
</table>

5.6 Charakterisierung von mm-MCM-41(ZSM-5)

In den folgenden Abschnitten werden die Ergebnisse der Synthese und der hydrothermalen Nachbehandlung von mm-MCM-41(ZSM-5) präsentiert und diskutiert. Die verschiedenen durchgeführten Syntheseansätze werden mit dem Buchstaben v und einer Nummer gekennzeichnet. Die Synthese von mm-MCM-41(ZSM-5) wurde mit vier verschiedenen Syntheseansätzen durchgeführt, die sich anhand der verwendeten Kristallkeimlösung unterscheiden:

- Synthesemethode 1 = v207 und v220
- Synthesemethode 2 = v223
- Synthesemethode 3 = v224
- Synthesemethode 4 = v226

Da die Synthese von mm-MCM-41(ZSM-5) erst am Ende dieser Arbeit in Angriff genommen wurde, ist die Anzahl an Synthesen noch gering. Für v223, v224 und v226 gibt es noch keine Reproduktionsversuche. Außerdem wurden die Materialien bisher nur mit XRD, 27Al-MAS-NMR, AAS und Thermoanalyse charakterisiert. Weitere umfangreiche Untersuchungen, z. B. mittels Physisorptionsmessungen, IR-Spektroskopie und 29Si-MAS-NMR stehen noch aus.

5.6.1 Charakterisierung von mm-MCM-41(ZSM-5) (Synthesemethode 1)

Bei der Synthese von mm-MCM-41(ZSM-5) nach Methode 1 wird eine natriumfreie Kristallkeimlösung hergestellt. Damit entsprächen die zeolithischen Baueinheiten der H-Form des Zeolithen ZSM-5.

5.6.1.1 XRD

Wie man in Abbildung 98 erkennen kann, ist der (100) Peak von v207 as-made sehr breit und es sind keine eindeutig zu zuordnenden (110) und (200) Reflexe zu erkennen, sondern nur ein breiter und sehr flacher Peak im Bereich von 3,5 – 5° 2θ. Anhand der Lage des (100) Reflexes läßt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßiger die Mesoporen im MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm.

Durch die hydrothermale Nachbehandlung von v207 as-made kommt es zu einer Verschiebung der Reflexe zu kleineren 2θ–Werten. Allerdings sind bei v207hytr der (110) und (200) Reflex immer noch nicht gut aufgelöst. Der Ordnungsgrad von v207 wird also durch die hydrothermale Nachbehandlung erhöht, wenn auch nicht in demselben Maß, wie es bei mm-MCM-41(Silicalit-1) (siehe Abbildung 42 in Abschnitt 5.2.1) bzw. mm-MCM-41(TS-1) (siehe Abbildungen 65 und 66 in Abschnitt 5.4.1) der Fall ist. Bei der Calcinierung von v207 ex wurde die mesoporöse Struktur zerstört.

Wie man in Abbildung 99 erkennen kann, ist der (100) Peak von v220 as-made sehr breit und es sind keine eindeutig zu zuordnenden (110) und (200) Reflexe zu erkennen, sondern nur ein breiter und sehr flacher Peak im Bereich von 3,5 – 5° 2θ. Anhand der Lage des (100) Reflexes läßt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßiger die Mesoporen im MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm.

Durch die hydrothermale Nachbehandlung von v220 as-made kommt es zu einer Verschiebung der Reflexe zu kleineren 2θ-Werten. Allerdings sind bei v220hytr der (110) und (200) Reflex immer noch nicht gut aufgelöst. Der Ordnungsgrad von v220 wird also durch die hydrothermale Nachbehandlung erhöht, wenn auch nicht in demselben Maß, wie es bei mm-MCM-41(Silicalit-1) (siehe Abbildung 42 in Abschnitt 5.2.1) bzw. mm-MCM-41(TS-1) (siehe Abbildungen 65 und 66 in Abschnitt 5.4.1) der Fall ist.

Genau wie bei v207 wurde bei v220 ex die mesoporöse Struktur durch die Calcinierung zerstört. Es scheint, dass das nach Methode 1 synthetisierte Material durch die Anwendung der hydrothermalen Nachbehandlung stabilisiert werden muss, um eine Calcinierung zu ermöglichen.

<table>
<thead>
<tr>
<th>Probe</th>
<th>a_0 [Å]</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>v207 as-made</td>
<td>47,1</td>
<td>1,6</td>
</tr>
<tr>
<td>v207 hytr</td>
<td>49,5</td>
<td>0,2</td>
</tr>
<tr>
<td>v207 tc</td>
<td>46,0</td>
<td>0,7</td>
</tr>
<tr>
<td>v220 as-made</td>
<td>44,7</td>
<td>1,4</td>
</tr>
<tr>
<td>v220 hytr</td>
<td>48,0</td>
<td>1,3</td>
</tr>
<tr>
<td>v220 tc</td>
<td>46,0</td>
<td>0,3</td>
</tr>
</tbody>
</table>

5.6.1.2 Thermoanalyse

Abbildung 100: Vergleich der Thermoanalyse von v207 as-made (links) und v207 hytr (rechts).

5.6.1.3 AAS

<table>
<thead>
<tr>
<th>Probe</th>
<th>wt.% Aluminium</th>
<th>Si/Al Verhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>v207 as-made</td>
<td>0,40</td>
<td>-</td>
</tr>
<tr>
<td>v207hytr</td>
<td>0,67</td>
<td>-</td>
</tr>
<tr>
<td>v207 tc</td>
<td>1,11</td>
<td>40</td>
</tr>
<tr>
<td>v220 as made</td>
<td>0,34</td>
<td>-</td>
</tr>
<tr>
<td>v220hytr</td>
<td>0,72</td>
<td>-</td>
</tr>
<tr>
<td>v220 tc</td>
<td>1,03</td>
<td>33</td>
</tr>
</tbody>
</table>

Die Schwankungen im Aluminiumgehalt zwischen v207 und v220 sind durch die Synthese bedingt. Der Aluminiumgehalt der calcinierten Proben liegt im Bereich von 1,03 bis 1,11 wt%. Der Unterschied im Aluminiumgehalt zwischen v207 tc und v220 tc ist vernachlässigbar.

5.6.1.4 27Al-MAS-NMR

In Abbildung 102 und 103 sind die 27Al-MAS-NMR-Spektren von v207 as-made, v207hytr und v207 tc zu sehen.

Wie Abbildung 102 zeigt, weist das Spektrum von v207 as-made nur ein einziges Signal bei etwa 54 ppm auf. Das zeigt, dass das Aluminium tetraedrisch koordiniert im Silicatgerüst vorliegt. Hingegen erkennt man kein Signal, welches einer oktaedrischen Koordination entspricht.

Im Spektrum von v207hytr kann man neben dem Signal bei 52 ppm ein zweites fast genau so intensives Signal bei 13,4 ppm erkennen. Es liegt hier also sowohl tetraedrisch als auch oktaedrisch koordiniertes Aluminium vor. Offensichtlich wird ein Teil der Aluminiumatome durch die hydrothermale Nachbehandlung aus dem Silicatgerüst herausgelöst. Darüber in welcher Form dieses oktaedrisch koordinierte Aluminium in den Poren von v207hytr vorliegt, kann anhand des Spektrums keine Aussage gemacht werden. Vermutlich liegt es in Form von Aluminiumoxid oder Aluminiumoxidhydroxid vor.

Eine Untersuchung v207hytr mittels Röntgenbeugung, um festzustellen in welcher Form das oktaedrisch koordinierte Aluminium in v207hytr vorliegt, ist nicht möglich, da v207hytr nur 0,67 wt.% Aluminium enthält. Das heißt, dass dementsprechend nur eine sehr geringe Menge an oktaedrisch koordiniertem Aluminium vorliegt, die mittels der Röntgenbeugung nicht mehr detektiert werden kann.

Eine Untersuchung von v207 tc mittels Röntgenbeugung, um festzustellen in welcher Form das oktaedrisch koordinierte Aluminium in v207 tc vorliegt, ist nicht möglich, da v207 tc nur 1,03 wt.% Aluminium enthält. Das heißt, dass entsprechend nur eine sehr geringe Menge an oktaedrisch koordiniertem Aluminium vorliegt, die mittels der Röntgenbeugung nicht mehr detektierbar ist. Auch alle anderen Materialien, die in Abschnitt 5.6 besprochen werden, weisen einen Aluminiumgehalt im Bereich von 0,3 bis 2,0 wt.% auf. Daher ist es auch...
bei ihnen nicht möglich, eventuell vorhandenes oktaedrisch koordiniertes Aluminium mittels Röntgenbeugung näher zu charakterisieren.

Abbildung 104: Vergleich der 27Al-MAS-NMR Spektren von v220 as-made (links) und v220hytr (rechts). Das 27Al-NMR Spektrum von v220 as-made weist neben dem Signal für tetraedrisch koordiniertes Aluminium bei 52,3 ppm zwei breite Signale bei etwa 30 ppm und 0 ppm auf. Bei 207hytr erkennt man neben dem Signal bei 52,2 ppm ein zweites fast genau so intensives Signal bei 12,9 ppm. Das zeigt, dass das Aluminium sowohl tetraedrisch als auch oktaedrisch koordiniert vorliegt.

Das 27Al-NMR Spektrum von v220 as-made weist neben dem Signal für tetraedrisch koordiniertes Aluminium bei 52,3 ppm zwei breite Signale bei etwa 30 ppm und 0 ppm auf.

Eine genau Interpretation diese Spektren ist jedoch schwierig. Das relativ scharfe Signal bei 52,3 ppm läßt darauf schließen, dass ein Teil des Aluminiums tetraedrisch koordiniert im Silicatgerüst vorliegt. Anhand des breiten Signals bei 0 ppm kann man schlussfolgern, dass ein Teil des Aluminiums in Form von $\text{[AlO}_6\text{]}$-Oktaedern außerhalb des Silicatgerüsts vorliegt. Das breite Signal bei etwa 30 ppm kann jedoch nicht eindeutig zugeordnet werden. Es kann sich dabei entweder um fünfach koordiniertes Aluminium handeln, oder um Aluminium, das im Silicatgerüst in Form von stark verzerrten Tetraedern vorliegt. Eine genauere Interpretation des Spektrum ist jedoch nicht möglich. Man kann aber festhalten, dass bei v220 as-made der größere Teil des Aluminiums in tetraedrischer Form vorliegt.

Die Spektren von v207hytr (siehe Abbildung 102) und v220hytr ähneln sich sehr stark. Im Spektrum von v220hytr kann man neben dem Signal bei 52 ppm ein zweites und fast genau so intensives Signal bei 13,4 ppm erkennen. Es liegt hier also sowohl tetraedrisch als auch oktaedrisch koordiniertes Aluminium vor.

Offensichtlich wird eine Teil der Aluminiumatome durch die hydrothermale Nachbehandlung aus dem Silicatgerüst herausgelöst. Darüber in welcher Form dieses Aluminium in v207hytr vorliegt, kann anhand des Spektrums keine Aussage gemacht werden. Vermutlich liegt es in Form von Aluminiumoxid oder Aluminiumoxidhydroxid vor.

5.6.2 Charakterisierung von von mm-MCM-41(ZSM-5) (Synthesemethode 2)

5.6.2.1 XRD
Bei v223 wurde ein Teil des hydrothermal nachbehandelten Materials direkt calciniert, ohne vorher das CTA⁺ durch einen dreistufigen Extraktionsprozess zu entfernen. Auf diese Weise soll der Einfluss des Extraktionsprozesses auf die Aluminiumkoordination überprüft werden. Die so calcinierten Materialien erhalten das Kürzel „toc“. Dabei wurde v223 toc eine Stunde bei 300 °C und zwei Stunden bei 520 °C, und v223 toc2
eine Stunde bei 300 °C und eine Stunde bei 520 °C calciniert. Die Aufheizrate betrug beides Mal 1K/min
Alle im Abschnitt 5.6.2.1 diskutierten Experimente sind mit einem Diffraktometer mit einer Bragg-Brentano
Geometrie durchgeführt worden. In Abbildung 106 sind die Beugungsdiagramme von v223 as-made, v223hytr,
v223hytr-ex, v223 tc, v223 toc und v223 toc2 dargestellt.

Die Ergebnisse für v223 ähneln sehr stark denen von v207 und v220. Wie Abbildung 106 zeigt, ist der (100) Reflex von v223 as-made sehr breit und es sind keine eindeutig zu zuordnenden (110) und (200) Reflexe erkennbar, sondern nur ein breiter und sehr flacher Peak im Bereich von 3,5 – 5 ° 2θ. Anhand der Lage des (100) Reflexes läßt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßig der Mesoporen im MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm.

Durch die hydrothermale Nachbehandlung von v223 as-made kommt es zu einer Verschiebung der Reflexe zu kleineren 2θ-Werten. Allerdings sind bei v223hytr der (110) und (200) Reflex immer noch nicht gut aufgelöst. Der Ordnungsgrad von v223 wird also durch die hydrothermale Nachbehandlung erhöht, wenn auch nicht in demselben Maß, wie es bei mm-MCM-41(Silicalit-1) (siehe Abbildung 42 in Abschnitt 5.2.1) bzw. mm-MCM-41(TS-1) (siehe Abbildungen 65 und 66 in Abschnitt 5.4.1) der Fall ist.

Die Beugungsdiagramme von v223 tc, v223 toc und v223 toc2 weisen auf keinen großen Unterschied
zwischen diesen Materialien hin. Man kann bei allen die (110) und (200) Reflexe voneinander unterscheiden.
Auch hier ist die Auflösung der Reflexe deutlich schlechter als z. B. bei v174 tc (siehe Abbildung 42 in Abschnitt 5.2.1) bzw. v202 tc (siehe Abbildungen 65 und 66 in Abschnitt 5.4.1). Da die Calcinierung von v220 ex nicht gelang, wurde auf eine Calcinierung von v223 ohne vorherige Stabilisierung durch die hydrothermale Nachbehandlung verzichtet.

Die Berechnung der Gitterkonstante a_0 von v223 as-made, v223 hytr, v223 tc, v223 toc und v223 toc2 erfolgt, wie in Kapitel 5.1.1.1 beschrieben, mit Hilfe der Methode der kleinsten Fehlerquadrate (engl.: Non Linear Least Square Method). Die auf diese Weise berechneten Gitterkonstanten und die zugehörigen Standardabweichungen σ sind in Tabelle 24 zusammengefasst.

<table>
<thead>
<tr>
<th>Probe</th>
<th>a_0 [Å]</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>v223 as-made</td>
<td>46,3</td>
<td>1,3</td>
</tr>
<tr>
<td>v223 hytr</td>
<td>49,0</td>
<td>0,9</td>
</tr>
<tr>
<td>v223 tc</td>
<td>46,4</td>
<td>1,2</td>
</tr>
<tr>
<td>v223 toc</td>
<td>46,0</td>
<td>1,5</td>
</tr>
<tr>
<td>V223 toc2</td>
<td>46,6</td>
<td>1,5</td>
</tr>
</tbody>
</table>

5.6.2.2 Thermoanalyse

Abbildung 107: Vergleich der Thermoanalyse von v223 as-made (links) und v223 hytr-ex (rechts).

5.6.2.3 AAS

Der Gehalt an Aluminium für v223 ist in Tabelle 25 zusammengestellt. Dabei wird zum einen der Aluminiumgehalt in Gewichtsprozent angegeben und zum anderen das Atomverhältnis von Silicium zu Aluminium.

<table>
<thead>
<tr>
<th>Probe</th>
<th>wt.% Aluminium</th>
<th>Si/Al Verhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>V223 as-made</td>
<td>0,49</td>
<td>-</td>
</tr>
<tr>
<td>v223hytr</td>
<td>0,81</td>
<td>-</td>
</tr>
<tr>
<td>V223 tc</td>
<td>1,26</td>
<td>35</td>
</tr>
<tr>
<td>V223 toc</td>
<td>1,24</td>
<td>35</td>
</tr>
<tr>
<td>V223 toc2</td>
<td>1,24</td>
<td>35</td>
</tr>
</tbody>
</table>

Der Aluminiumgehalt der calcinierten Proben liegt im Bereich von 1,24 bis 1,26 wt%. Die Unterschiede im Aluminiumgehalt zwischen v223 tc, v223 toc und v223 toc2 sind vernachlässigbar.
5.6.2.4 27Al-MAS-NMR

In Abbildung 108 bis 110 sind die 27Al-MAS-NMR-Spektren von v223 as-made, v223 hytr, v223 tc, v223 toc und v223 toc2 zu sehen.

Im Spektrum von v223 as-made finden sich zwei Signale. Das erste liegt bei 52,6 ppm. Das zweite Signal liegt bei etwa 12,69 ppm. Es liegt hier also tetraedrisch und oktaedrisch koordiniertes Aluminium vor. Offensichtlich wird bei der Synthese nicht das komplette Aluminium in das Silicatgerüst eingebaut, ein Teil davon verbleibt in Form von [AlO₃]-Oktaedern außerhalb. Darüber in welcher Form dieses Aluminium in v223 as-made vorliegt, kann anhand des Spektroms keine Aussage gemacht werden. Vermutlich liegt es in Form von Aluminiumoxid oder Aluminiumoxidhydroxid vor.

Bei v223 hytr ist jedoch nur noch ein Signal bei 51,9 ppm vorhanden. Dies ist ungewöhnlich, bedeutet es doch, dass hier nur tetraedrisch koordiniertes Aluminium vorhanden ist. Offensichtlich wird das oktaedrisch koordinierte Aluminium durch die hydrothermale Nachbehandlung aus dem Material entfernt.
Abbildung 109: 27Al-MAS-NMR Spektren von v223 tc (links) und v223 toc2 (rechts). In beiden Spektren erkennt man neben einem breiten Signal bei 52 ppm ein zweites viel intensiveres Signal bei 13,4 ppm. Das zeigt, dass das Aluminium sowohl tetraedrisch als auch oktaedrisch koordiniert vorliegt.

Abb Bildung 110: 27Al-MAS-NMR Spektrum von v223 toc. Man erkennt drei breite Signale, die bei 50 ppm, 30 ppm und 0 ppm liegen.

Auch mit Synthesemethode 2 kein Material erzeugt werden, dass nach der Calcinierung nur tetraedrisch koordiniertes Aluminium aufweist.

5.6.3 Charakterisierung von von mm-MCM-41(ZSM-5) (Synthesemethode 3)

Da es mit den Syntheseansätzen nach Methode 1 und 2 nicht gelungen ist, ein Material zu erzeugen, dass nach der Calcinierung nur tetraedrisch koordiniertes Aluminium aufweist, mussten weitere Änderungen an der Synthesemethode vorgenommen werden. Als Vorlage diente hierfür die Arbeit von Larsen et al. [65], in der eine Synthese von nanokristallinem ZSM-5 beschrieben wird. Die Autoren verwendeten für ihre Synthese eine Kristallkeimlösung mit folgender molarer Zusammensetzung:
TEOS : TPAOH : Al : Na : Wasser von 1: 0,36 : 0,06 : 0,007 : 19,8

Damit unterscheidet sie sich in ihrer Zusammensetzung deutlich von den Kristallkeimlösungen, die bei den Synthesemethoden 1 und 2 verwendet wurden. Diese hatten die Zusammensetzung:

- TEOS : TPAOH : Al : Wasser von 1: 0,36 : 0,06 : 19,8 (Synthesemethode 1)
- TEOS : TPAOH : Al : Na : Wasser von 1: 0,35 : 0,03 : 0,01 : 15,45 (Synthesemethode 2)

Weiterhin verwendeten Larsen et al. Aluminiumisopropoxid anstatt Aluminium-tri-sec-butoxid als Aluminiumprecursor.

5.6.3.1 XRD

Auch bei v224 wurde ein Teil des hydrothermal nachbehandelten Materials direkt calciniert, ohne vorher das CTA* durch einen dreistufigen Extraktionsprozess zu entfernen. Auf diese Weise sollte der Einfluss des Extraktionsprozesses auf die Aluminiumkoordination überprüft werden. Das so calcinierte Material erhält das Kürzel „toc“. Dabei wurde v223 toc eine Stunde bei 300 °C und eine Stunde bei 520 °C calciniert. Die Aufheizrate betrug 1K/min.

In Abbildung 111 erkennt man, dass der (100) Peak von v224 as-made sehr breit ist und keine eindeutig zu zuordnenden (110) und (200) Reflexe erkennbar sind, sondern nur ein breiter und sehr flacher Peak im Bereich von 3,5 – 5 ° 2θ. Anhand der Lage des (100) Reflexes lässt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßiger die Mesoporen im MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm.

Durch die hydrothermale Nachbehandlung von v224 as-made kommt es zu einer Verschiebung der Reflexe zu kleineren 2θ-Werten. Allerdings sind bei v224hytr der (110) und (200) Reflex immer noch nicht gut aufgelöst, sondern nur in Form eines einzigen breiten Peaks vorhanden. Der Ordnungsgrad von v224 wird also durch die hydrothermale Nachbehandlung erhöht, wenn auch nicht in demselben Maß wie bei mm-MCM-41 (Silicalit-1) (siehe Abbildung 42 in Abschnitt 5.2.1) bzw. mm-MCM-41(TS-1) (siehe Abbildungen 65 und 66 in Abschnitt 5.4.1)

<table>
<thead>
<tr>
<th>Probe</th>
<th>(a_0) [Å]</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v224 as-made</td>
<td>46,8</td>
<td>1,7</td>
</tr>
<tr>
<td>v224hytr</td>
<td>48,5</td>
<td>0,9</td>
</tr>
<tr>
<td>v224 tc</td>
<td>45,2</td>
<td>1,1</td>
</tr>
<tr>
<td>V224 toc</td>
<td>45,2</td>
<td>1,2</td>
</tr>
</tbody>
</table>

5.6.3.2 Thermoanalyse

Im folgenden werden die Ergebnisse der Thermoanalyse von v224 betrachtet. Alle Proben wurden hierbei mit einer Aufheizrate von 1K/min auf 750 °C aufgeheizt. In den Diagrammen wird der Gewichtsverlust und das DTA-Signal in Abhängigkeit von der Ofentemperatur aufgetragen. Dabei wird ein Signal auf der DTA-Kurve mit

![Abbildung 112: Vergleich der Thermoanalyse von v224 as-made (links) und v224hytr (rechts).](image1)

Man findet bei v224 as-made ein exothermes Signal in der DTA Kurve bei 310,4 °C. Der Gewichtsverlust liegt bei 68,4 %. Nach der hydrothermalen Nachbehandlung erkennt man eine Verschiebung des exothermen Peaks zu 287,9 °C. Des Weiteren beträgt der Gewichtsverlust nur noch 47,3 %. Ein zweiter exothermer Peak, welcher der Zersetzung von TPA⁺ entspricht kann nicht beobachtet werden.

![Abbildung 113: Ergebnis der Thermoanalyse von v224hytr-ex.](image2)

Abbildung 113 zeigt das Ergebnis der Thermoanalyse von v224hytr-ex. Man kann hier kein scharfes Signal in der DTA-Kurve erkennen, sondern nur einen sehr breiten Peak mit einem Maximum im Bereich von 200 °C bis 215 °C. Der Gewichtsverlust liegt bei 24,7 %. Geht man davon aus, dass das bei v224hytr-ex beobachtet exotherme Ereignis durch die Zersetzung des TPA⁺ verursacht wird, dann stellt sich die Frage, warum man dieses Ereignis nicht schon in der DTA-Kurve von v224 as-made beobachten konnte. In der DTA-Kurve von

5.6.3.2 AAS
Der Gehalt an Aluminium für v224 ist in Tabelle 27 zusammengestellt. Dabei wird zum einen der Aluminiumgehalt in Gewichtsprozent angegeben und zum anderen das Atomverhältnis von Silicium zu Aluminium.

<table>
<thead>
<tr>
<th>Probe</th>
<th>wt.% Aluminium</th>
<th>Si/Al Verhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>V224 as-made</td>
<td>0,62</td>
<td>-</td>
</tr>
<tr>
<td>v224hytr</td>
<td>0,97</td>
<td>-</td>
</tr>
<tr>
<td>V224 tc</td>
<td>1,58</td>
<td>27</td>
</tr>
<tr>
<td>V224 toc</td>
<td>1,57</td>
<td>28</td>
</tr>
</tbody>
</table>

Der Aluminiumgehalt der calcinierten Proben liegt bei 1,58 bzw. 1,57 wt%. Der Unterschied im Aluminiumgehalt zwischen v224 tc und v224 toc ist vernachlässigbar.

5.6.3.4 ²⁷Al-MAS-NMR
In Abbildung 114 und 115 sind die ²⁷Al-MAS-NMR-Spektren von v224 as-made, v224 tc und v224 toc zu sehen.

Abbildung 114: Im ²⁷Al-MAS-NMR Spektrum von v224 as-made erkennt man neben dem Signal bei 52,4 ppm ein zweites und fast genau so intensives Signal bei 12,4 ppm. Das zeigt, dass das Aluminium sowohl tetraedrisch als auch oktaedrisch koordiniert vorliegt.
Im Spektrum von v224 as-made finden sich zwei Signale. Das erste liegt bei 52,4 ppm und entspricht einer
tetraedrischen Koordination des Aluminiums. Das zweite Signal liegt bei 12,44 ppm. Es liegt hier also
tetraedrisch koordiniertes Aluminium neben oktaedrisch koordiniertem vor. Offensichtlich wird bei der
Synthese nicht das komplette Aluminium in das Silicatgerüst eingebaut, ein Teil davon verbleibt in Form von
\([\text{AlO}_3]\)-Oktaedern außerhalb des Silicatgerüsts. Darüber in welcher Form dieses Aluminium in den Poren von
v224 as-made vorliegt, kann anhand des Spektrums keine Aussage gemacht werden. Vermutlich liegt es in
Form von Aluminiumoxid oder Aluminiumoxidhydroxid vor.

Abbildung 115: \(^{27}\text{Al-MAS-NMR Spektrum von v224 tc (links) und v224 toc (rechts). Das Spektrum von v224 tc weist drei Signale auf, die bei etwa 50 ppm, 33,0 ppm und etwa 0 ppm liegen. Im Spektrum von v224 toc erkennt man neben einem breiten Signal bei etwa 50 ppm ein zweites viel intensiveres Signal bei etwa 13 ppm. Das zeigt, dass das Aluminium sowohl tetraedrisch als auch oktaedrisch koordiniert vorliegt.}

Abbildung 115 zeigt die Spektren von v224 tc und v224 toc. Das Spektrum von v224 tc weist drei Signale auf,
die bei etwa 50 ppm, 33,0 ppm und etwa 0 ppm liegen. Damit ähneln es dem Spektrum von v207 tc (siehe Ab-
bildung 103 in Abschnitt 5.6.1.4) bzw. v220 tc (siehe Abbildung 104 in Abschnitt 5.6.1.4). Auch bei v224 tc
can man anhand des Spektrums nur die Aussage machen, dass tetraedrisch und oktaedrisch koordiniertes
Aluminium vorliegt. Das Signal bei 30 ppm kann nicht eindeutig zugeordnet werden. Es wird entweder von
5-fach koordiniertem Aluminium verursacht, das sich außerhalb des Silicatgerüsts befindet, oder von
Aluminium, das im Silicatgerüst in Form von stark verzerrten Tetraedern vorliegt. Auch hier ist eine genauere
Analyse des Spektrums nur mittels Multi-Quanten-MAS-NMR-Experimenten möglich. Jedoch ist bei v224 tc
der Aluminiumgehalt dafür zu niedrig.

Das Spektrum von v224 toc zeigt ein breites Signal bei etwa 50 ppm, das jedoch nur von geringer Intensität
ist. Das zeigt, dass das tetraedrisch koordinierte Aluminium in v224 toc stark fehlgeordnet ist. Dominant im
Spektren ist jedoch das Signal bei etwa 13 ppm. Somit ist hier neben tetraedrisch koordiniertem Aluminium
Die Aluminiumkoordination traf sich hauptsächlich oktaedrisch koordiniertes Aluminium vorhanden, das außerhalb des Silicatgerüst vorliegt. Darüber in welcher Form dieses Aluminium in v223 tc und v223 toc vorliegt, kann anhand der Spektren keine Aussage gemacht werden. Vermutlich liegt es in Form von Aluminiumoxids vor. Der Vergleich der Spektren von v224 toc und v224 toc zeigt, dass der Extraktionsprozess, durch den das CTA⁺ aus dem Material entfernt wird, bei v224 durchaus einen Einfluss auf die Aluminiumkoordination hat. Im Fall von v223 konnte ein derartiger Einfluss nicht nachgewiesen werden. Dieser Unterschied kommt offensichtlich dadurch zustande, dass die Kristallkeimlösung bei der Synthese von v224 eine andere Zusammensetzung aufweist, als bei der Synthese von v223.

Somit konnte auch mit Synthesemethode 3 kein Material erzeugt werden, dass nach der Calcinierung nur tetraedrisch koordiniertes Aluminium aufweist.

5.6.4 Charakterisierung von von mm-MCM-41(ZSM-5) (Synthesemethode 4)

5.6.4.1 XRD

Auch bei v226 wurde ein Teil des hydrothermal nachbehandelten Materials direkt calciniert, ohne vorher das CTA⁺ durch einen dreistufigen Extraktionsprozess zu entfernen. Auf diese Weise soll der Einfluss des Extraktionsprozesses auf die Aluminiumkoordination überprüft werden. Das so calcinierte Material erhält das Kürzel „toc“. Dabei wurde v226 toc eine Stunde bei 300 °C und eine Stunde bei 520 °C calciniert. Die Aufheizrate betrug 1K/min.

Abbildung 116 zeigt, dass der (100) Peak von v226 as-made sehr breit ist und keine eindeutig zu zuordnenden (110) und (200) Reflexe erkennbar sind, sondern nur ein breiter und sehr flacher Peak im Bereich von 3,5 - 5° 2θ. Anhand der Lage des (100) Reflexes läßt sich jedoch berechnen, dass der (110) und (200) Reflex in diesem Bereich liegen. Sie sind jedoch sehr breit und überlappen sich, so dass sie nicht als getrennte Signale vorliegen. Es ist daher anzunehmen, dass das Porensystem keinen hohen Ordnungsgrad aufweist. Je besser geordnet, also je regelmäßiger die Mesoporen im MCM-41 angeordnet sind, umso schärfer und besser aufgelöst sind die Reflexe im Beugungsdiagramm.
Wie Abbildung 117 zeigt, kommt es bei v226 as-made durch die hydrothermale Nachbehandlung zu einer Verschiebung der Reflexe zu kleineren 2θ-Werten. Allerdings sind bei v226hytr der (110) und (200) Reflex immer noch nicht gut aufgelöst, sondern nur in Form eines einzigen breiten Peaks vorhanden. Der Ordnungsgrad von v226 wird also durch die hydrothermale Nachbehandlung erhöht, wenn auch nicht in demselben Maß, wie es bei mm-MCM-41(Silicalit-1) (siehe Abbildung 42 in Abschnitt 5.2.1) bzw. mm-MCM-41(TS-1) (siehe Abbildungen 65 und 66 in Abschnitt 5.4.1) der Fall ist.

Die molare Zusammensetzung der für die Synthese von v226 verwendeten Kristallkeimlösung unterscheidet sich deutlich von derjenigen, die für die Synthese von v207 verwendet wurde. Die Kristallkeimlösung hatte bei der Synthese von v207 die folgende Zusammensetzung:

$$\text{TEOS} : \text{TPAOH} : \text{Al} : \text{Wasser} \text{ von } 1: 0,36 : 0,06 : 19,8 \text{ (Synthesemethode 1).}$$

Als Aluminiumprecursor wurde Aluminium-tri-sec-butoxid verwendet.

Die für die Synthese von v226 verwendete Kristallkeimlösung setzte sich wie folgt zusammen:

$$\text{TEOS} : \text{TPAOH} : \text{Al} : \text{Na} : \text{Wasser} \text{ von } 1: 0,36 : 0,06 : 0,007 : 19,8 \text{ (Synthesemethode 4).}$$

Als Aluminiumprecursor wurde Aluminiumisopropoxid verwendet.

Diese massive Veränderung der Synthesebedingungen kann durchaus Einfluss auf die Stabilität des erzeugten Materials haben, daher wurde hier erneut die Calcinierung des nicht hydrothermal nachbehandelten Materials versucht. Wie man in Abbildung 116 sehen kann, weist v226 ca einen sehr breiten (100) Reflex bei $2,6 \, ^\circ \, 2\theta$ auf, dessen Form deutlich zeigt, dass die mesoporöse Struktur des Materials zumindest teilweise zerstört wurde. Auch das nach Methode 4 synthetisierte Material kann ohne zusätzliche Stabilisierung durch die hydrothermale Nachbehandlung nicht calciniert werden.

Die Beugungsdiagramme von v226 tc und v226 toc weichen jedoch deutlich von den der bisher besprochenen Materialien ab. Es kommt hier nicht zu einer besseren Auflösung des (110) und des (200) Reflexes, sondern man findet immer noch ein breites Signal im Bereich von 3,5 bis 5$\, ^\circ \, 2\theta$.

<table>
<thead>
<tr>
<th>Probe</th>
<th>a_0 [Å]</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>v226 as-made</td>
<td>46,1</td>
<td>1,5</td>
</tr>
<tr>
<td>v226hytr</td>
<td>47,9</td>
<td>1,2</td>
</tr>
<tr>
<td>v226 tc</td>
<td>43,8</td>
<td>1,9</td>
</tr>
<tr>
<td>V226 toc</td>
<td>43,8</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Die Gitterkonstante a_0 für v226 ca wurde nicht in Tabelle 26 aufgenommen. Betrachtet man die Form des Reflexes in Abbildung 116, so erkennt man, dass er kein scharfes Maximum aufweist, sondern sich über einen Bereich von $0,7^\circ 2\theta$ erstreckt. Eine Berechnung der Gitterkonstante ist daher nicht sinnvoll.

5.6.4.2 Thermoanalyse

Abbildung 118 zeigt die Ergebnisse der Thermoanalyse von v226 as-made und v226hytr. Man findet bei v226 as-made ein exothermes Signal in der DTA-Kurve bei 323,3 °C. Der Gewichtsverlust liegt bei 67,7 %. Bei v226hytr erkennt man eine Verschiebung des exothermen Peaks zu 284 °C. Desweiteren beträgt der Gewichtsverlust nur noch 48,9 %. Ein zweiter exothermer Peak, welcher der Zersetzung von TPA$^+$ entspricht, kann nicht beobachtet werden.
Abbildung 119 zeigt die Ergebnisse der Thermoanalyse von v226 ex und v226hytr-ex. Die DTA-Kurve von v226 ex weist ein exothermes Ereignis bei 238 °C und eines bei 335 °C auf. Der Gewichtsverlust liegt bei 35,2 %. Die Zuordnung der Signale erweist sich jedoch als schwierig. Das erste exotherme Ereignis findet bei 238 °C statt. In der DTA-Kurve von v226 as-made (siehe Abbildung 118) kann bei dieser Temperatur jedoch kein exothermes Signal beobachtet werden, obwohl es nicht durch das intensive Signal der CTA-Zersetzung überdeckt worden wäre. Man hat hier also eine ähnliche Situation vorliegen wie bei v207 (siehe Abbildung 100/101 in Abschnitt 5.6.1.2), v223 (siehe Abbildung 107 in Abschnitt 5.6.2.2), und v224 (siehe Abbildung 112/113 in Abschnitt 5.6.3.2). Daher ist es auch hier plausibel anzunehmen, dass dieses exotherme Ereignis nicht durch die Zersetzung von TPA verursacht wird.

Das zweite exotherme Signal ist sehr breit. Es erstreckt sich über einen Bereich von 270 - 415 °C mit einem Maximum bei etwa 335 °C. Auch hier ist eine Zuordnung dieses Signals nicht eindeutig möglich. Vergleicht man die DTA-Kurve von v226 ex mit der von v174 ex (siehe Abbildung 53 in Abschnitt 5.2.3) bzw. v202 ex (siehe Abbildung 78 in Abschnitt 5.4.3), so stellt man fest, dass sich dort das Signal der TPA-Zersetzung über einen Bereich von 60 - 70 °C erstreckt. Die Unterschiede in den DTA-Kurven zeigen deutlich, dass bei v226 ex die thermische Templatzersetzung durch andere Prozesse erfolgt als bei bei v174 ex und v202 ex. Möglicherweise, ist hier noch restliches CTA in den Mesoporen vorhanden, das nicht durch die Extraktion entfernt wurde. Wenn das der Fall wäre, würde das exotherme Signal, das durch die Zersetzung des CTA entsteht, das exotherme Signal der TPA-Zersetzung überdecken. Damit kann anhand des erhaltenen Ergebnis der Thermoanalyse keine definitive Aussage darüber gemacht werden, ob v226 ex Mikroporen enthält oder nicht.

Fast das gleiche gilt für v226hytr-ex. Hier zeigt sich ein vergleichsweise scharfer Peak in der DTA-Kurve bei 219 °C und ein sehr breiter zweiter Peak im Bereich von etwa 250 – 440 °C. Der Gewichtsverlust liegt bei 31 %. Aus genau den gleichen Gründen wie bei v226 ex ist hier ist eine genaue Zuordnung der Signale nicht
möglicherweise. Damit kann anhand des erhaltenen Ergebnis der Thermoanalyse keine definitive Aussage darüber gemacht werden, ob v226hytr-ex Mikroporen enthält oder nicht.

5.7.4.3 AAS
Der Gehalt an Aluminium für v226 ist in Tabelle 29 zusammengestellt. Dabei wird zum einen der Aluminiumgehalt in Gewichtsprozent angegeben und zum anderen das Atomverhältnis von Silicium zu Aluminium.

<table>
<thead>
<tr>
<th>Probe</th>
<th>wt.% Aluminium</th>
<th>Si/Al Verhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>v226 as-made</td>
<td>0,82</td>
<td>-</td>
</tr>
<tr>
<td>v226hytr</td>
<td>1,22</td>
<td>-</td>
</tr>
<tr>
<td>v226 ca</td>
<td>1,92</td>
<td>22</td>
</tr>
<tr>
<td>v226 tc</td>
<td>2,19</td>
<td>20</td>
</tr>
<tr>
<td>v226 toc</td>
<td>2,05</td>
<td>21</td>
</tr>
</tbody>
</table>

Der Aluminiumgehalt der calcinierten Proben liegt zwischen 1,92 bzw. 2,19 wt%. Die Unterschiede im Aluminiumgehalt zwischen v226 ca, v226 tc und v226 toc sind relativ gering.

5.7.4.4 27Al-MAS-NMR
In Abbildung 120 bis 122 sind die 27Al-MAS-NMR-Spektren von v226 as-made, v226hytr, v226 ca, v226 tc und v226 toc zu sehen.

Abbildung 120 zeigt das Spektrum von v226 as-made. Man erkennt nur ein einziges Signal bei 52,2 ppm. Dies entspricht einer tetraedrischen Koordination des Aluminiums. Es liegt hier also tetraedrisch koordiniertes Aluminium neben einem geringeren Anteil an oktaedrisch koordiniertem Aluminium vor. Somit kann man davon ausgehen, dass kein Aluminium außerhalb des Silicatgerüsts in Form von [AlO₃]-Oktaedern vorliegt.

Im Spektrum von v226hytr kann man neben dem Signal bei 52,5 ppm ein zweites und deutlich schwächeres Signal bei 12,8 ppm erkennen. Es liegt hier also tetraedrisch koordiniertes Aluminium neben einem geringeren Anteil an oktaedrisch koordiniertem Aluminium vor. Offensichtlich wird eine Teil der Aluminiumatome durch die hydrothermale Nachbehandlung aus dem Silicatgerüst herausgelöst. Darüber in welcher Form dieses Aluminium in den Poren von v226hytr vorliegt, kann anhand des Spektrums keine Aussage gemacht werden. Vermutlich liegt es in Form von Aluminiumoxid oder Aluminiumoxidhydroxid vor.

Abbildung 121 zeigt die Spektren von v226 ca und v226 tc. Im Spektrum von v226 ca erkennt man ein intensives Signal bei 51,8 ppm, das tetraedrisch koordiniertem Aluminium zugeordnet werden kann. Darüber hinaus weist das Spektrum noch zwei Signale bei 12,5 ppm und bei -0,6 ppm auf, die beide oktaedrisch koordiniertem Aluminium zugeordnet werden können. Im Spektrum v226 tc erkennt man ein Signal bei 51,5 ppm, dass tetraedrisch koordiniertem Aluminium zugeordnet werden kann. Weiterhin weist das Spektrum noch ein Signal bei 12,9 ppm und ein sehr schwach ausgeprägtes Signal bei 0 ppm auf. Beide können oktaedrisch koordiniertem Aluminium zugeordnet werden.

Abbildung 121 zeigt die Spektren von v226 ca und v226 tc. Im Spektrum von v226 ca erkennt man ein intensives Signal bei 51,8 ppm, das tetraedrisch koordiniertem Aluminium zugeordnet werden kann. Darüber hinaus weist das Spektrum noch zwei Signale bei 12,5 ppm und bei -0,6 ppm auf. Beide können oktaedrisch koordiniertem Aluminium zugeordnet werden. Bei v226 ca liegen also zwei unterschiedliche Spezies von [AlO₃]-Oktaedern vor. Darüber in welcher Form diese jedoch vorliegen, kann anhand der Spektren keine Aussage gemacht werden.

Im Spektrum von v226 tc erkennt man ein Signal bei 51,5 ppm, das tetraedrisch koordiniertem Aluminium

Abbildung 122: \(^{27}\)Al-MAS-NMR Spektrum von v226 toc. Man erkennt ein sehr breites Signal bei 51,7 ppm, das eine breite Schulter bei etwa 30 ppm aufweist. Außerdem existiert ein zweites breites Signal bei -0,8 ppm.

5.6.5 Zusammenfassung
Fasst man die Ergebnisse für mm-MCM-41(ZSM-5) zusammen, so kann man feststellen, dass sich bis jetzt keine mikro-/mesoporöses Material erzeugt werden konnte. Die erhaltenen Resultate sind teilweise widersprüchlich und schwer oder gar nicht zu interpretieren.

Generell kann man bei den Beugungsdiagrammen der untersuchten Materialien die gleichen Beobachtungen machen wie bei mm-MCM-41(Silicalit-1) und bei mm-MCM-41(TS-1). Der (100) Peak ist sehr breit und es sind keine eindeutig zu zuordnenden (110) und (200) Reflexe zu erkennen, sondern nur ein breiter und sehr flacher Peak im Bereich von 3,5 – 4,5 ° 2θ. Eine Calcination der Materialien ist nur dann ohne Zerstörung der mesoporösen Struktur möglich, wenn sie vorher durch die hydrothermale Nachbehandlung stabilisiert werden. Allerdings sind im hydrothermal nachbehandelten Material der (110) und (200) Reflex weiterhin nicht gut aufgelöst. Diese Ergebnisse weichen deutlich von denen ab, die man bei der hydrothermalen Nachbehandlung von mm-MCM-41(Silicalit-1) und mm-MCM-41(TS-1) erhält. Auch nach der Calcination ist die Auflösung der Peaks deutlich schlechter als bei hydrothermal nachbehandelten mm-MCM-41(Silicalit-1) und mm-MCM-41(TS-1).

Die Ergebnisse der Thermoanalyse lassen nicht den Schluss zu, dass in den untersuchten Materialien Mikroporen vorliegen.

Nach der Calcination liegt bei allen Materialien oktaedrisch koordiniertes Aluminium neben tetraedrisch koordiniertem Aluminium vor. Eine genaue Interpretation der Spektren ist jedoch nicht immer möglich. Dies

Bei allen anderen Materialien findet sich nach der Calcinierung eine Mischung aus tetraedrisch und oktaedrisch koordiniertem Aluminium, wobei der Anteil an oktaedrisch koordiniertem Aluminium immer deutlich dominiert. Die einzigen Ausnahmen stellen $v226$ ca und $v226$ toc dar. Bei $v226$ ca liegt mehr tetraedrisch als oktaedrisch koordiniertes Aluminium vor. Allerdings zeigt das Beugungsdiagramm von $v226$ ca, dass die mesoporöse Struktur durch die Calcinierung teilweise zerstört wird. Bei $v226$ toc liegt tetraedrisch koordiniertes Aluminium neben einem geringeren Anteil an oktaedrisch koordiniertem Aluminium vor. Die Signale sind jedoch relativ breit, was auf eine starke Fehlordnung der [AlO_6]-Tetraeder und der [AlO_4]-Oktaeder hinweist. Damit ist es nicht gelungen, trotz Variation der Synthesemethode, ein Material zu erzeugen, das auch nach der Calcinierung nur rein tetraedrisch koordiniertes Aluminium aufweist.

6. Zusammenfassung

Für MCM-41 besteht eine Korrelation zwischen der Intensität der Beugungsreflexe und der Wanddicke. Dadurch kann gezeigt werden, dass die Wanddicke durch die hydrothermale Nachbehandlung zunimmt. Dabei
ist die Zunahme der Wanddicke mit der Temperatur und Dauer der hydrothermalen Nachbehandlung korreliert.

Durch die systematischen Untersuchungen der hydrothermalen Nachbehandlung von MCM-41 und MCM-48 konnte außerdem gezeigt werden, dass ein Teil der Veränderungen, die durch die hydrothermale Nachbehandlung verursacht werden, stark von dem verwendeten Material selber abhängen.

So konnte für ein MCM-41 Material beobachtet werden, dass die Größe der Einheitszelle und die Wanddicke des Silicatgerüsts zunahmen, aber der Porenradius konstant blieb oder bei längerer Dauer bzw. bei höherer Temperatur der Nachbehandlung sogar abnahm. Bei einem anderen MCM-41 Material, das unter gleichen Bedingungen synthetisiert wurde, führte die hydrothermale Nachbehandlung jedoch zu einer Vergrößerung sowohl der Einheitszelle und des Porenradius als auch der Wanddicke.

Soweit bekannt, wurde bisher noch nicht über eine solche Materialabhängigkeit der hydrothermalen Nachbehandlung von MCM-41 und MCM-48 berichtet.

Das zweite Ziel dieser Arbeit lag in der reproduzierbaren Synthese von MCM-41 und MCM-48 Materialien, deren Silicatgerüst aus zeolithischen Baueinheiten der Zeolithe Silicalit-1, TS-1, und ZSM-5 bestehen sollte. Diese Materialien sollten dann sowohl Mikro- als auch Mesoporen enthalten, und werden mit mm- bezeichnet. Für mm-MCM-41(Silicalit-1) und mm-MCM-41 (TS-1) konnte dieses Ziel erreicht werden. Die synthetisierten Materialien, wurden durch folgende Methoden umfangreich charakterisiert: XRD, IR-Spektroskopie, Thermoanalyse, TEM (Transmissionsspektroskopie), N₂-Physisorption, Argon-
Physisorption und Festkörper-NMR.

Die mm-MCM-41(TS-1) Materialien wurden zusätzlich durch UV-Vis-Spektroskopie und XAS-Spektroskopie untersucht, um die Koordinationszahl des Titans zu bestimmen, da diese eng mit der katalytischen Aktivität verknüpft ist. Außerdem wurden katalytische Testreaktionen zur Charakterisierung durchgeführt.

Detaillierte XRD-Messungen zeigen, dass es sich bei mm-MCM-41(TS-1) und mm-MCM-41(Silicalit-1) nicht um Kompositmaterialien handelt, in dem MCM-41 und ein Zeolith als getrennte Phasen vorliegen. Auch die TEM-Aufnahmen bestätigen das Vorliegen einer reinen MCM-41 Phase mit einer sehr regelmäßigen hexagonalen Struktur. Die IR-Spektren von mm-MCM-41(TS-1) und mm-MCM-41(Silicalit-1) weisen eine Bande bei etwa 560 cm\(^{-1}\) auf, die den Gerüstschwingungen von zeolithischen 5 und 6 Ringen zugeordnet werden kann. Dies weist darauf hin, dass das Silicatgerüst dieser Materialien aus zeolithischen Baueinheiten aufgebaut ist. Anhand der Ergebnisse der Thermoanalyse kann ebenfalls auf das Vorhandensein von Mikroporen in mm-MCM-41(Silicalit-1) und mm-MCM-41(TS-1) geschlossen werden.

Die Ergebnisse der N\(_2\)-Physisorptionsmessungen zeigen, dass in mm-MCM-41(TS-1) und mm-MCM-41(Silicalit-1) eine relativ enge Porenradienverteilung der Mesoporen vorliegt.

Eine Abschätzung der Dicke der Porenwand aus den gemachten TEM-Aufnahmen ergibt für mm-MCM-41(Silicalit-1) eine Wanddicke von etwa 11 Å und für mm-MCM-41(TS-1) eine Wanddicke von ca. 14 Å.

Für mm-MCM-41(TS-1) und mm-MCM-41(Silicalit-1) wurde die Porenradienverteilung der Mikroporen mittels Ar-Physisorptionsmessung bestimmt. Die Ergebnisse zeigen, dass in mm-MCM-41(Silicalit-1) Mikroporen mit einem mittleren Porenradius von etwa 4 – 4,5 Å vorliegen. Bei mm-MCM-41(TS-1) beträgt der mittlere Porendurchmesser der Mikroporen 8,5 Å. Unklar ist aber, ob die Mikroporen wirklich durch die komplette Wand des Silicatgerüstes verlaufen, und somit zwei benachbarte Mesoporen miteinander verbinden, oder ob sie nur einige Ängström weit in die Wand hineinreichen.

Die Charakterisierung der hydrothermal nachbehandelten mm-MCM-41(Silicalit-1) und mm-MCM-41(TS-1) mittels IR-Spektroskopie und Thermoanalyse zeigt zum einen, dass die zeolithischen Baueinheiten durch die Nachbehandlung nicht zerstört werden, und zum anderen, dass diese Materialien Mikroporen aufweisen.
Dies ist ein sehr wichtiges Ergebnis, erlaubt es doch die hydrothermale Nachbehandlung von mikro-/mesoporösen Materialien zur Stabilisierung des Silicatgerüstes.

Damit konnte das dritte Ziel dieser Arbeit, die Übertragung der hydrothermalen Nachbehandlung auf die erzeugten mikro-/mesoporöse Materialien, erreicht werden.

Führt man die Epoxiderung von Cyclohexen mit Tert-butylhydroperoxide (TBHP) als Oxidierungsmittel in
Decan durch, so erhält man mit den mm-MCM-41(TS-1) Materialien einen Umsatz von 35 – 37 %. Verwendet man Ti/MCM-41 als Katalysator für die Epoxidierung von Cyclohexen in Decan, so liegt der Umsatz nur bei 5,7 %. Dabei sind die Selektivitäten für die Bildung des Epoxids annähernd gleich. Das heißt, die Ausbeute am gewünschten Produkt liegt bei Ti/MCM-41 bei 5,4% während sie bei den mikro-/mesoporösen Materialien bei etwa 32 % liegt. Bei der Epoxidierung in Decan entsteht bei der Verwendung von mikro-/mesoporösen Materialien ein Nebenprodukt mit einer Selektivität von 2 - 4 %, das bei der Verwendung von Ti/MCM-41 nicht gefunden wird.

Die Synthese von mm-MCM-48(Silicalit-1) und mm-MCM-48(TS-1) gestaltete sich schwieriger als die von mm-MCM-41(Silicalit-1) und mm-MCM-41 (TS-1). Erst nach längeren Versuchen konnte durch Variation der verwendeten Templatmenge, Materialien aus Kristallkeimlösungen des Silicalit-1 bzw. des TS-1 zu erzeugen werden, die eine MCM-48-Struktur aufweisen. Dies gelang allerdings erst am Ende dieser Arbeit, so dass eine umfangreiche Charakterisierung dieser Materialien noch aussteht. Da aber für ihre Synthese die gleichen Kristallkeimlösungen verwendet wurden, wie für die Synthese von MCM-41(Silicalit-1) und mm-MCM-41 (TS-1), ist es plausibel anzunehmen, dass sie dementsprechend auch aus zeolithischen Baueinheiten des Silicalit-1 und des TS-1 aufgebaut sind.
7. Literaturverzeichnis

[44] A. Zecchina, G. Spoto, S. Bordiga, A. Ferrero, G. Petri, G. Leofanti, M. Padovan,
[52] CELREF V3 entwickelt von Jean Laugier and Bernard Bochu (Laboratoire des Matériaux et du Génie Physique Ecole Nationale Supérieure de Physique de Grenoble (INPG)) (http://www.inpg.fr/LMGP)
Anhang

A1. Thermoanalyse von hydrothermal nachbehandeltem MCM-41

Abbildung 123: Vergleich der Ergebnisse der Thermoanalyse von MCM-41hytr 7d/130 (links) MCM-41hytr 3d/140 (rechts).

Abbildung 124: Ergebnis der Thermoanalyse von MCM-MCM-41hytr 1d/150.

A2. Isothermen und Porenradienverteilungen von MCM-41(b) ca und MCM-41(b)hytr 5d/140 ca

Abbildung 125: Physisorptionsisotherme von MCM-41(b) ca (schwarz) und MCM-41(b)hytr 5d/140 ca (rot). Bei kleinen \(p/p_0 \) Werten ist der Anstieg der Isotherme bei MCM-41(b) ca steiler als bei MCM-41(b)hytr 5d/140 ca.
Abbildung 126: Porenradienverteilung von MCM-41(b) ca (schwarz) und MCM-41(b)hytr 5d/140 ca (rot). Durch die hydrothermale Nachbehandlung wird das Maximum der Porenradienverteilung zu größeren Werten verschoben.

A3. Thermoanalyse von hydrothermal nachbehandeltem MCM-48

Abbildung 127: Vergleich der Ergebnisse der Thermoanalyse von MCM-48hytr 1d/150 (links) und MCM-48hytr 3d/140

Abbildung 128: Ergebnis der Thermoanalyse von MCM-MCM-41hytr 7d/130
A4. Röntgenbeugungsdiagramme von v216

A5. Röntgenbeugungsdiagramme von v171

A6. Röntgenbeugungsdiagramme und UV-Vis-Spektren von v215

A7. UV-Vis-Spektren von v215

A8. UV-Vis-Spektren von v202

Eidesstattliche Erklärung

.. ..
Ort, Datum Unterschrift