Contents

1 Introduction .. 1
1.1 Preamble .. 1
1.2 Motivations for the thesis 2
1.3 Main goals of the work 3
1.4 Contributions .. 3
1.5 Outline of the thesis 3

2 Background and methods 4
2.1 Sequencing timed motor acts: state of the art 4
 2.1.1 Classical approaches 4
 2.1.2 Learning based approaches 5
 2.1.3 Dynamical systems approaches 7
2.2 Dynamical systems theory 8
 2.2.1 Generation of behaviors 9
 2.2.2 Organization of behaviors 11
2.3 Timed motor acts: dynamical systems perspective 23
 2.3.1 Timing dynamics 24
 2.3.2 Action-Perception dynamics 26

3 Dynamical model for sequence generation of timed movements 28
 3.1 Dynamics of timed movement 28
 3.2 Temporal stabilization of movements 30
 3.2.1 Modulating the oscillator frequency 31
 3.2.2 Modulating the movement dynamics 34
 3.3 Organization of timed behaviors 37
 3.3.1 Movement module 37
 3.3.2 Sequential organization of timed behaviors 40
 3.3.3 Task input ... 42
 3.3.4 Perceptual and Motor systems 42
 3.4 Robotic catching simulation 42
 3.5 Results .. 45
 3.5.1 Successful execution of a catching task 45
 3.5.2 Catching movement abortion after ball reflection ... 49
 3.5.3 Reactivating a catching sequence 53
 3.5.4 Updating the catching movement after ball deviation 56
 3.6 Discussion ... 59
4 Application of the dynamical model to a robotic hitting task

4.1 Task setting

4.1.1 Task movements description

4.1.2 Visual system

4.1.3 Robotic agent

4.1.4 Reference frames and transformations

4.2 Dynamical model for the robotic hitting task

4.2.1 Higher level elementary behaviors

4.2.2 Movement modules

4.2.3 Perceptual and Motor systems

4.2.4 Stroke movement

4.3 Results

4.3.1 Simulation results

4.3.2 Hardware implementation results

4.4 Discussion

5 Conclusion

5.1 Summary of contributions

5.2 Overview of the results

5.3 Limitations and future work

Appendices

A Methods and Parameters

A.1 Visual system: supplement

A.1.1 Perspective projection

A.1.2 Perspective back-projection

A.2 Brief review of the Kalman filter

A.2.1 Operations of the Kalman filter

A.2.2 Tuning of the Kalman filters

A.3 Parameters of the dynamics and their values

A.3.1 Timing dynamics

A.3.2 Movement module

A.3.3 Higher level elementary behavior