Biochemische und biophysikalische Charakterisierung
von MST1- und NORE1-Komplexen

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften
an der Fakultät für Chemie und Biochemie
der Ruhr-Universität Bochum

vorgelegt von
Diplom-Biochemiker
Cihan Makbul

Bochum 2009
1. Gutachter: Prof. Dr. Christian Herrmann

2. Gutachter: Prof. Dr. Raphael Stoll
Inhaltverzeichnis

1 Einleitung .. 1

1.1 MST1 ... 2

1.1.1 Die proapoptotische Ser/Thr-Kinase MST1 .. 2

1.1.2 Die Rolle von MST1 bei der Induktion von Apoptose in Säugetierzellen durch Phosphorylierung
 von Histon 2B ... 4

1.1.3 Induktion von Apoptose in primären Säugetierneuronen durch MST1 5

1.1.4 Stabilisierung von hSAV gegen proteolytischen Abbau durch die Bindung an MST1 und
 MST2 .. 6

1.1.5 Induktion von Apoptose durch *connector enhancer of KSR* (CNK1) und die Rolle von
 MST1 und RASSF1A bei diesem Prozess .. 7

1.1.6 Durch die SARAH-Domänen vermittelte Interaktionen zwischen MST1/MST2 und den
 Mitgliedern aus der RASS-Familie .. 9

1.2 RASS-Familie .. 13

1.2.1 Gemeinsame Eigenschaften der Mitglieder aus der RASS-Familie ... 13

1.2.2 Interaktionen zwischen den Mitgliedern aus der RASS-Familie und RAS 16

1.2.3 Zellbiologischen Eigenschaften von RASSF1 .. 17

1.2.4 Die Rolle von RASSF1 in der Zellzykluskontrolle ... 19

1.2.5 Die Rolle von RASSF1 bei der Apoptose .. 21

1.2.6 Assoziation von RASSF1 mit Mikrotubuli ... 22

1.2.7 NORE1/RASSF5 ... 23

1.2.8 Tumorsuppressor-Aktivitäten von NORE1 .. 26

1.2.9 Assoziation von NORE1 mit dem Zytoskelett und Mikrotubuli ... 28

1.2.10 NORE1B und die Regulierung der Polarisation und Adhäsion von Lymphozyten 32

1.3 RAS und seine Rolle in Apoptose ... 35

2 Zielsetzung der Arbeit ... 38

3 Material und Methoden .. 39

3.1 Material ... 39

3.1.1 Oligonukleotide ... 39

3.1.2 DNA-Konstrukte .. 39

3.1.3 Enzyme und Proteine ... 40

3.1.4 Proteinstandards ... 40

3.1.5 Reagenziensätze (Kits) .. 40
3.1.6 *E.coli*-Stämme ... 41
3.1.7 Nährmedien für Zellkulturen und Antibiotika 41
3.1.8 Puffer und Lösungen .. 41
3.1.9 Säulenmaterialien für HPLC .. 43
3.1.10 Chemikalien ... 43
3.2 Methoden .. 44
3.2.1 Molekularbiologische Methoden ... 44
 3.2.1.1 Polymerasekettenreaktion ... 44
 3.2.1.2 Konzentrationsbestimmung von Nukleinsäuren 46
 3.2.1.3 Agarosegelelektrophorese .. 47
 3.2.1.4 Aufreinigung von DNA aus Agarosegelen 47
 3.2.1.5 Restriktionsverdau von DNA-Fragmenten 48
 3.2.1.6 Ligation von DNA-Fragmenten .. 48
 3.2.1.7 Herstellung kompetenter *E. coli* 49
 3.2.1.8 Transformation kompetenter *E. coli* 49
 3.2.1.9 Isolierung von Plasmid-DNA aus *E. coli* 50
 3.2.1.10 Colony-PCR ... 50
3.2.2 Proteinbiochemische Methoden ... 50
 3.2.2.1 Expressionstest von Proteinen 50
 3.2.2.2 Zellanzucht im präparativen Maßstab 51
 3.2.2.3 SDS-Polyacrylamidgelelektrophorese 52
 3.2.2.4 Bioaffinitätschromatographie 53
 3.2.2.5 Ionenaustauschchromatographie 54
 3.2.2.6 Konzentrierung von Proteinen 54
 3.2.2.7 Größenausschlußchromatographie 55
 3.2.2.8 Austausch proteingebundener Nukleotide 56
 3.2.2.9 Analyse von Nukleotiden mittels Umkehrphasen-HPLC 56
 3.2.2.10 Bradford-Assay .. 57
 3.2.2.11 UV-Spektrometrische Konzentrationsbestimmung von Proteinen ... 57
 3.2.2.12 Konjugation von Proteinen ... 58
 3.2.2.13 Kristallisation von Proteinen .. 60
 3.2.2.14 Dynamische Lichtstreuung ... 62
3.2.2.15 Differential Scanning Calorimetry .. 64
3.2.2.16 Circulardichroismus-Spektroskopie 64

4 Ergebnisse .. 66

4.1 Komplexzusammensetzung des NORE- und MST1-Homooligomers und des NORE-MST1-Heterooligomers .. 66
4.2 Vernetzung von NORE1- und MST1-Homooligomeren und NORE-MST1- Heterooligomeren mithilfe von EDC .. 72
4.3 Vernetzung von NORE1- und MST1-Homooligomeren und NORE1-MST1- Heterooligomeren mithilfe von DSG .. 74
4.4 Analytische Gelfiltration für die autoinhibitorische Domäne von MST1...... 77
4.5 Untersuchung der hydrodynamischen Radien von MST1-330-487 und MST1- 330-431 mittels DLS .. 79
4.6 Vernetzung der autoinhibitorischen Domäne von MST1 mithilfe von EDC und DSG ... 83
4.7 Untersuchung des Faltungszustands der autoinhibitorischen Domäne von MST1 mittels DSC .. 85
4.8 Temperatursensitivität der autoinhibitorischen Domäne 87
4.9 Untersuchung von Sekundärstrukturelementen der autoinhibitorischen Domäne von MST1 mittels Circular-Dichroismus 89
4.10 Densitometrische Untersuchung des NORE1-MST1-Heterokomplexes 90
4.11 Isolierung des NORE1-MST1-Heterokomplexes 93
4.12 Densitometrische Bestimmung der Zusammensetzung des NORE1-MST1- Heterokomplexes ... 95
4.13 Einfluss von RAS auf die NORE1-MST1-Heterodimerisierung 97
4.14 Kristallisation der SARAH-Domäne von NORE1 101
4.15 Kristallisation der SARAH-Domäne von MST1 103
4.16 Kristallisation des NORE1-MST1-Heterokomplexes 104

5 Diskussion .. 105

5.1 Komplexzusammensetzung von NORE1 und MST1 105
5.2 Sekundärstruktur der autoinhibitorischen Domäne 108
5.3 Faltungsenthalpien unterschiedlicher MST1-Konstrukte 111
5.4 Der außergewöhnlich große hydrodynamische Radius der autoinhibitorische Domäne von MST1 .. 112
5.5 Anomale Mobilität der autoinhibitorischen Domäne von MST1 bei der SDS- PAGE ... 115
5.6 Die Aminosäurezusammensetzung der autoinhibitorischen Domäne von MST1 .. 116
5.7 PEST-reiche Sequenzen und Caspasen .. 117
6 Ausblick .. 119
7 Zusammenfassung .. 121
8 Resümee .. 123
9 Anhang .. 125
 9.1 Literaturverzeichnis .. 125
 9.2 Abkürzungsverzeichnis .. 128
 9.3 Abkürzungsverzeichnis für Aminosäuren 133
 9.4 Abkürzungsverzeichnis für Nukleotide 133
 9.5 Lebenslauf ... 134
 9.6 Danksagung ... 134
 9.7 Erklärung .. 136
1 Einleitung

Als molekulare Schalter spielen Proteine aus der RAS-Familie (vor allem H-RAS, N-RAS; und K-RAS) eine sehr wichtige Rolle bei der Regulation des Zellwachstums, der Proliferation und der Differenzierung. Offenbar sind die Vertreter der RAS-Familie auch in der Lage, in Abhängigkeit des Zelltyps und des zellulären Kontextes Zellzyklusarrest und Apoptose zu induzieren. Eine wachsende Anzahl wissenschaftlicher Publikationen deutet darauf hin, dass die Zellzyklus-hemmende und proapoptotische Wirkung von RAS durch Proteine aus der Ras association domain family (RASS-Familie) vermittelt wird, wobei in diesem Zusammenhang RASSF1A und RASSF5A/NORE1A eine herausragende Rolle zu spielen scheinen. Das hervorstechendste Merkmal von RASSF1 und NORE1 ist die Tatsache, dass sie einerseits mit RAS, und andererseits mit der proapoptotischen Serin/Threonin-Kinase MST1 interagieren und in die Regulation der Zellzykluskontrolle, der Zellproliferation, Zellmotilität und der Apoptose involviert sind. Proteine aus der RASSF-, RAS-Familie und MST1 regulieren folglich die grundlegendsten zellulären Prozesse, deren Deregulierung sich in der Entwicklung von Krebs niederschlagen kann. Etwa 20 % aller menschlichen Tumore tragen nämlich eine aktivierende Punktmutation in einem der RAS-Gene. Als Tumorsuppressoren liegen RASSF1A und NORE1A in sehr vielen Tumoren inaktiviert vor.
Möglicherweise existiert in der Zelle ein durch RAS, die Mitglieder der RASS-Familie und MST1 kontrollierter Mechanismus, der die intra- und interzellulären pro- und antiapoptotischen Signale integriert und darauf eine Zellantwort gibt. Die Inaktivierung von RASSF1A und NORE1A führt möglicherweise dazu, dass RAS seine antiapoptotische Wirkung verliert und nur seine proliferative Wirkung beibehält und so stärker zur Entwicklung von Krebs beiträgt.

1.1 MST1

1.1.1 Die proapoptotische Ser/Thr-Kinase MST1

MST1 ist auch unter den Namen kinase responsive to stress 2 (KRS2) und sterile like kinase 4 (STK4) bekannt und kommt in allen untersuchten Zelllinien mit vergleichbaren Expressionslevels vor (Creasy et al., JBC 1995). Sie enthält N-terminal eine Kinase-Domäne, gefolgt von einer autoinhibitorischen Domäne, und C-terminal eine SARAH-Domäne (Salvador/RASSF/Hippo) (Abb.1).
Abbildung 1: Maßstabgetreue Domänenzusammensetzung von humanem MST1. MST1 verfügt über ein Erkennungsmotiv für Caspase-3 (DEMD³²⁶) und eins für die Caspasen-6 und 7 (TMDT³⁴⁹). Sie verfügt weiterhin C-terminal über zwei Kernexportsignale (NES: nuclear export signal) und ein Kernlokalisationssignal (NLS: nuclear localisation signal).

Es existiert eine MST1-Isoform, die als MST2 bezeichnet wird und mit MST1 zu 78 % identisch ist; die Sequenzidentität in der Kinase-Domäne beträgt sogar 96 %. Sie unterscheiden sich leicht in der Sequenz, die der Kinase-Domäne vorausgeht; die größten Sequenzunterschiede sind jedoch in der autoinhibitorischen Domäne zu finden (Abb.2). Deswegen werden die beiden Isoformen möglicherweise unterschiedlich reguliert, haben aber eine ähnliche oder identische Substratspezifität.

1.1.2 Die Rolle von MST1 bei der Induktion von Apoptose in Säugetierzellen durch Phosphorylierung von Histos 2B

MST1 kann durch das Vernetzen von CD95/FAS oder durch die Behandlung von Zellen (z. B. BJAB) mit Apoptose-auslösenden Stimuli wie Staurosporin, Etoposid und UV-Strahlung aktiviert werden und leitet die Apoptose ein (Graves et al, EMBO 1998). Zwischen der Kinasedomäne und der regulatorischen autoinhibitorischen Domäne enthält MST1 ein Erkennungsmotiv für Caspase-3 (DEMD326S) und eins für die

1.1.3 Induktion von Apoptose in primären Säugetierneuronen durch MST1

Transkriptionsfaktoren aus der FOXO-Familie induzieren adaptive oder Apoptose-auslösende Antworten, wenn Säugetierzellen oxidativem Stress ausgesetzt sind (Brunet et al, Science 2004). Die durch *insulin-like growth factor* (IGF) induzierte Akt-Kinase-Kaskade inhibiert die Aktivität von FOXO-Proteinen, indem AKT FOXO-Proteine an unterschiedlichen Stellen phosphoryliert, woraufhin sie mit 14-3-3-Proteinen assoziiert und im Zytoplasma verbleiben. In Säugetierneuronen, die oxidativem Stress
ausgesetzt sind, wird MST1 aktiviert. Nach ihrer Aktivierung phosphoryliert MST1 wiederum FOXO3 an Ser\(^{207}\) und bewirkt dessen Dissoziation von 14-3-3-Proteinen. Nun kann FOXO3 in den Zellkern transloziert werden, wo sie die Transkription von proapoptotischen Genen induziert und somit Apoptose auslöst (Lehtinen et al, Cell 2006).

1.1.4 Stabilisierung von hSAV gegen proteolytischen Abbau durch die Bindung an MST1 und MST2

Abgesehen von MST1 und MST2 und den Mitgliedern der RASS-Familie ist hSAV bislang das einzig bekannte Protein im menschlichen Organismus, das eine SARAH-Domäne besitzt, und findet deshalb hier eine Erwähnung. Es ist leider sehr wenig über die biochemischen und zellbiologischen Eigenschaften dieses Proteins bekannt.

In *D. melanogaster* existiert ein Signaltransduktionsweg, der von der Ser/Thr-Kinase Hippo (HPO) und dem Gerüstprotein Salvador (SAV) reguliert wird und der Induktion von Apoptose und der Begrenzung der Zellteilung dient. Die humanen Orthologe von HPO sind MST1 und MST2 und der von SAV ist eben hSAV, der auch als WW45 bezeichnet wird.

Das Protein hSAV verfügt neben zwei WW-Domänen (Prolin-bindende Domänen) C-terminal über eine SARAH-Domäne, die es befähigt mit MST1 und MST2 zu interagieren. Diese Interaktion führt durch einen bislang unbekannten Mechanismus zur Stabilisierung von hSAV gegen proteolytischen Abbau. Obwohl hSAV von MST1 und MST2 phosphoryliert werden kann, hat dies keinen Effekt auf die Stabilität von hSAV, da eine Kinase-inaktive Mutante von MST1 einen vergleichbaren Effekt auf die Stabilität von hSAV hat (Callus et al., FEBS 2006). Wieso hSAV durch die Interaktion mit MST1 und MST2 stabilisiert wird und was die Funktion der Phosphorylierung von hSAV durch MST1 und MST2 ist, bleibt unbekannt.
1.1.5 Induktion von Apoptose durch *connector enhancer of KSR* (CNK1) und die Rolle von MST1 und RASSF1A bei diesem Prozess

CNK1 aus *Drosophila melanogaster* ist ein Multidomänenprotein mit 1557 Aminosäureresten, bestehend aus einer N-terminalen SAM-, CRIC-, PDZ- und PH-Domäne und mehreren Prolin-reichen Domänen am C-Terminus. In *D. melanogaster* bindet CNK1 die RAF-Kinase und ist an deren Aktivierung durch RAS beteiligt (Anselmo et al., JBC 2002; Douziech et al., EMBO 2003). Im menschlichen Genom kommen drei CNK-Homologe vor: CNK1, CNK2 und CNK3. Obwohl CNK1 nur 713 Aminosäuren lang ist, hat sie die höchste Sequenzhomologie zu CNK1 aus *D. melanogaster* und auch eine ähnliche Domänenarchitektur.

Interessant an hCNK1 ist, dass es Proteine bindet, die an der Regulierung von Signaltransduktionswegen beteiligt sind, die entweder in den Zellzyklusarrest und Apoptose einmünden oder in die Zellproliferation, Zellwachstum und Modifikation des Zytoskeletts. CNK1 ist also an der Regulierung von zellulären Prozessen beteiligt, die sich gegenseitig ausschließen. Zu den Interaktionspartnern von hCNK1 gehören, neben cRAF1 auch die GTPase RHO, RAL-GDS und RLF. Bei RAL-GDS und RLF handelt es sich um Guaninnukleotid-Austauschfaktoren (GEF) von RAL-A und RAL-B.

Durch Trypanblau-Ausschluss konnte nachgewiesen werden, dass hCNK1, wenn es in 293-Zellen (aus menschlichen Nieren) transient exprimiert wird, Apoptose induziert. CNK1 entfaltet seine proapoptotische Wirkung nur in Zusammenarbeit mit RASSF1A und MST1/2, wobei es direkt mit RASSF1A und nicht aber mit MST1 interagiert. Die Interaktion zwischen RASSF1A und CNK-1 erfolgt über die CRIC- und PDZ-Domäne von CNK-1 (Rabizadeh et al., JBC 2004). Wenn rekombinantes hCNK1 alleine exprimiert wird, zeigt es eine diffuse Verteilung im Zytoplasma (Abb. 3A). Rekombinantes RASSF1A zeigt dagegen eine asymmetrische periphere Verteilung (Abb. 3B). Werden beide Proteine zusammen exprimiert, beobachtet man eine Kolokalisation an der Zellmembran, was darauf hindeutet, dass RASSF1A CNK1 an die Zellmembran rekrutiert (Abb. 3C).

Interessanterweise hat RASSF1C keine Wirkung auf die proapoptotische Aktivität von CNK1, obwohl es als Splicevariante von RASSF1A eine identische SARAH- und RB-Domäne besitzt. Die Gene von RASSF1A und RASSF1C besitzen eigene Promotoren und die Splicevarianten unterscheiden sich in ihren N-Termini, wobei RASSF1A dort eine C1-Domäne besitzt.

Es ist leider noch nicht klar, was die genaue Rolle von RASSF1A und RAS bei der proapoptotischen Wirkung von CNK1 ist. Insbesondere ist nicht bekannt, ob die C1-Domäne RASSF1A durch Bindung an die Zellmembran in die Lage versetzt, alleine
CNK1 an die Zellmembran zu rekrutieren oder ob bei diesem Prozess die Hilfe von RAS vonnöten ist. Es wäre denkbar, dass RAS RASSF1A bei der Rekrutierung von CNK1 unterstützt, da RAS seine Aktivität an der Zellmembran entfaltet und RASSF1A durch dessen RB-Domäne spezifisch bindet. Denkbar wäre auch ein Szenario, bei dem die C1-Domäne von RASSF1A keine Rolle bei der Rekrutierung von CNK1 an die Zellmembran spielt, sondern nur RAS.

1.1.6 Durch die SARAH-Domänen vermittelte Interaktionen zwischen MST1/MST2 und den Mitgliedern aus der RASS-Familie

Soweit bekannt, werden die Interaktionen von MST1 mit ihren Interaktionspartnern über die SARAH-Domäne vermittelt. Unter Benutzung einer cDNA-Bibliothek aus menschlicher Lunge und MST1 als Köder wurden bei einem Hefe-Zwei-Hybrid-Screen RASSF1, RASSF2, RASSF3, RASSF4/ADO37 und RASSF5/NORE1 als Interaktionspartner nachgewiesen. FLAG-getaggte rekombinante Versionen von RASSF5, RASSF1A und RASSF1C binden spezifisch durch ihre SARAH-Domänen an MST1, wenn sie in COS-7-Zellen transient exprimiert werden (Khokhlatchev et al., Current Biology 2002).

Bislang sind aus dem menschlichen Genom neun Proteine bekannt, die über eine SARAH-Domäne verfügen: RASSF1-6 (und deren Spleißvarianten), MST1, MST2 und WW45 (SAV1) (ExPASy proteomics server of the Swiss Institute of Bioinformatics). Bei allen drei Proteinfamilien befindet sich die SARAH-Domäne am C-Terminus und umspannt etwa 50 Aminosäuren (Abb.4).
Abbildung 4: Vergleich der Aminosäuresequenzen der SARAH-Domänen von MST1, MST2, WW45 und den Mitgliedern der RASS-Familie (RASSF1-6; es wurde jeweils die Isoform A berücksichtigt). Die Positionen a und d des Heptadrepeats sind grau unterlegt.

Bei Coiled-Coils handelt es sich generell um Bündel von α-Helices, die sich weiter zu Superhelices verdrillt haben. Sie enthalten gewöhnlich zwei bis vier Helices mit paralleler oder antiparalleler Orientierung, wobei es weniger häufig auch Strukturen gibt, die fünf und mehr Helices enthalten (Lupas et al., Adv. Protein Chem. 2006). Beispiele hierfür seien das Tropomyosin-Dimer (2b9c) (Abb.5), das gp41-Trimer aus dem HI-Virus (1env), der tetramere SNARE-Komplex aus *Saccharomyces cerevisiae* (3b5n) und der pentamere COMP-Komplex (*cartilage oligomeric matrix protein*) aus *Rattus norvegicus* (1fbm).

Abbildung 5: Die durch Röntgenstrukтурanalyse bestimmte dreidimensionale Struktur von Tropomyosin α (89-207) aus *Rattus norvegicus* (2b9c). Bei der Struktur handelt es sich um ein antiparalleles Homodimer.
Obwohl die meisten Coiled-Coils Homo- oder Heterooligomere sind, gibt es auch Strukturen, die aus einer einzigen Kette bestehen, wobei die α-Helices fast immer eine antiparallele Orientierung aufweisen.

Eine spezifische Eigenschaft von Coiled-Coils ist die Wiederholung einer aus sieben Aminosäuren bestehenden Sequenz, die als Heptadrepeat bezeichnet wird und deren Positionen mit $(a\cdot b\cdot c\cdot d\cdot e\cdot f\cdot g)_n$ benannt werden (Abb.6). Die Positionen a und d werden durch hydrophobe Aminosäurereste besetzt und die anderen Positionen durch hydrophile Aminosäurereste, so dass das folgende charakteristische Muster entsteht: $(H\cdot P\cdot P\cdot H\cdot P\cdot P\cdot P)_n$ (mit P: polar und H: hydrophob). Die Positionen a und d werden bevorzugt von Leucin, Isoleucin, Valin und Alanin besetzt.

Abbildung 6: Vom N-Terminus aus gesehene Endansicht auf ein Heptadrepeat. Gezeigt ist die schematische Darstellung des einfachsten Coiled-Coils, nämlich eines parallelen Homodimers. Die Dimerisierung erfolgt über interhelikale hydrophobe Wechselwirkungen zwischen den Positionen a und a' und d und d' statt, was durch gestrichelte Linien angedeutet ist.

Die thermodynamisch treibende Kraft bei der Oligomerisierung von Coiled-Coils sind die hydrophoben interhelikalen Interaktionen an den Positionen a und d. Bei der Packung von Coiled-Coils entsteht ein hydrophober innerer Kern, der sehr dicht gepackt und nach außen hin vor Wassermolekülen abgeschirmt ist. Da eine α-Helix pro Windung durchschnittlich 3,6 Aminosäurereste benötigt, winden sich (im einfachsten Fall) die beiden α-Helices umeinander, deswegen auch der Name Coiled-Coil. Kennzeichnend für Coiled-Coils ist eine charakteristische Packung von

Obwohl Coiled-Coils sehr regelmäßige Strukturen sind, sind sie oft diskontinuierlich und das Heptadrepeat kann durch Insertionen von einem (Skips), drei (Stammers) oder vier (Stutters) Aminosäuren unterbrochen sein. Insertionen anderer Länge kommen selten vor und tragen daher keine Namen. Die Insertionen können die Kontinuität des Peptidrückgrats und die Packung des hydrophoben inneren Kerns stören.

Die Aminosäuresequenz der einzelnen SARAH-Domänen weist kein strenges Heptadrepeat-Muster auf und ist bei RASSF1-6 durch eine Sequenz von 3-4 Aminosäuren aus negativ geladenen Aminosäuren unterbrochen (Abb.4). Die Aminosäuresequenzen der SARAH-Domänen enthalten an den Positionen a und d nicht nur hydrophobe Aminosäurereste, sondern auch teilweise geladene und polare Aminosäurereste. Die Positionen e und g werden nicht wie gewöhnlich durch polare und geladene Aminosäurereste besetzt sondern auch teilweise durch hydrophobe Aminosäurereste. Deswegen ist es möglich, dass die einzelnen SARAH-Domänen (vor allem diejenigen, die an den Positionen e und g hydrophobe Aminosäurereste beinhalten) nicht nur Homo- oder Heterodimere bilden, sondern auch höhere Oligomere.
1.2 RASS-Familie

1.2.1 Gemeinsame Eigenschaften der Mitglieder aus der RASS-Familie

Das gemeinsame Merkmal der RASS-Proteinfamilie auf der Ebene der Primärsequenzen ist, dass alle Mitglieder der Familie eine RB-Domäne enthalten. RASSF1-6 kommen in verschiedenen Splicevarianten vor (oft zwei) und verfügen C-terminal über eine SARAH-Domäne. Die verschiedenen Splicevarianten unterscheiden sich im Wesentlichen an ihren N-Termini. RASSF7-8 haben dagegen variable C-Termini und besitzen keine SARAH-Domänen (Abb. 7).

Die Mitglieder der RASS-Familie nehmen hauptsächlich an der Regulation der Zellzykluskontrolle und Apoptose teil. In vielen Tumorzellen liegen einige Mitglieder

Ein anderes gemeinsames Merkmal von Mitgliedern der RASS-Familie ist, wie erwähnt, die häufig gemachte Beobachtung, dass sie in die Zellzykluskontrolle involviert sind (Abb.8). Die Überexpression von RASSF1A in MCF-7 Brustkrebstumoren bewirkt einen Arrest in der G1- (transient) und G2/M-Phase (Rong et al., Oncogene 2004). In 293T-Zellen induziert RASSF1A zwar keinen G1-Arrest, aber dafür einen G2/M-Arrest (Song et al., Nat Cell Bio. 2004 und Rong et al., Oncogene 2004). Die Überexpression von RASSF1A in HeLa-Zellen führt zu einem mitotischen Arrest in der Prometaphase (Song et al., Nat Cell Bio. 2004). In mit GFP-RASSF2 transfizierten 293-T-Zellen wird eine Abnahme um 20 % von Zellen in der G2/M-Phase beobachtet, was auf einen G1/G0-Arrest hindeutet (Vos et al., JBC 2003). In A549-Zellen bewirkt NOR1 ähnlich wie RASSF1 einen Arrest in der G1-Phase (Aoyama et al., Oncogene 2004).
Abbildung 8: Zellzykluskontrolle durch Mitglieder aus der RASS-Familie. Mit G1 und G2 werden jeweils die Lücken \textit{(gaps)} zwischen der S- und M-Phase bezeichnet. Die DNA-Synthese findet während der S-Phase statt. Während der M-Phase finden nacheinander die Mitose und die Zytokinese statt. Die Phasen G1, S und G2 werden häufig zur Interphase zusammengefasst. In dieser Phase wächst die Zelle.

1.2.2 Interaktionen zwischen den Mitgliedern aus der RASS-Familie und RAS

Wie erwähnt verfügen alle Mitglieder aus der RASS-Familie über eine RB-Domäne (Abb.7 und 9); es konnte allerdings nur für RASSF1, RASSF2, RASSF4 und RASSF5/NORE1 gezeigt werden, dass sie tatsächlich auch an RAS binden. Es sollte allerdings erwähnt werden, dass über die anderen Familienmitglieder (vor allem RASSF6-8) kaum Publikationen vorhanden sind, so dass noch nicht bekannt ist, ob es sich bei deren RB-Domänen tatsächlich auch um solche handelt.

Mithilfe von GDI-Assays konnte gezeigt werden, dass NORE-RB mit hoher Affinität (K_D=0,08 µM) und RASSF1-RB mit einer um zwei Größenordnungen niedrigeren Affinität (2,7 µM) an H-RAS binden (Stieglitz et al., EMBO 2008). Mithilfe des GDI-Assays und der ITC wurde zudem nachgewiesen, dass NORE1-RB mit einer K_D von 0,15 µM (GDI) an K-RAS, mit 0,13 µM (GDI) an N-RAS und mit 0,16 µM (ITC) an M-RAS bindet (Promotionsarbeit von Daniel Schwarz, 2002). In Zelllysaten von mit rekombinan tem K-RAS und RASSF4 transfizierten 293-T-Zellen konnte gezeigt werden, dass RASSF4 und K-RAS koimmunpräzipitieren. Weiterhin konnte durch In-vitro-Imm unpräzipitationsexperimenten mithilfe von gereinigter RASSF4-RB und GTP-beladenem und farnesyliertem K-RAS gezeigt werden, dass sie miteinander direkt interagieren (Eckfeld et al., Cancer Res. 2004). Durch die gleichen Experimente konnte nachgewiesen werden, dass RASSF2 ebenfalls an K-RAS bindet, aber nur schwach an H-RAS (Vos et al., JBC 2003).

1.2.3 Zellbiologischen Eigenschaften von RASSF1

RASSF1 besitzt sieben Isoformen, die als RASSF1A-G bezeichnet werden. Die Isoformen A und C werden ubiquitär exprimiert und die anderen Isoformen zeigen eine hohe Gewebespezifität. RASSF1A ist das am besten untersuchte Mitglied aus der
RASS1-Familie und hat eine, verglichen mit anderen RASSF-Proteinen, hohe Sequenzidentität mit NORE1A sowie eine ähnliche Domänenzusammensetzung (Abb. 7). RASSF1A und NORE1A sind außerdem die einzigen Vertreter aus der RASS-Familie, die N-terminal über eine C1-Domäne verfügen.

Beide Proteine haben nicht nur eine hohe Sequenzhomologie und eine ähnliche Domänenarchitektur, sondern sind auch an der Regulierung ähnlicher zellulärer Prozesse wie Zellzykluskontrolle, Apoptose, Stabilität von Mikrotubuli und Zellmotilität beteiligt. Die Deregulierung dieser Prozesse trägt sehr stark zur Karzinogenese bei und macht verständlich, wieso RASSF1A in sovielen Tumorarten epigenetisch inaktiviert vorliegt. Diese Inaktivierung ist fast ausschließlich auf die Hypermethylierung der CpG-Inseln der Promotorregion von RASSF1A zurückzuführen und konnte in 50 unterschiedlichen Tumorarten nachgewiesen werden (Agathanggelou et al., Cancer Research 2005) (Abb. 10).
RASSF1A-defiziente Mäuse scheinen sich normal zu entwickeln, sind aber verglichen mit ihren nicht RASSF1A-defizienten Artgenossen sehr anfällig für die Entwicklung von Krebs. Werden die RASSF1A-defizienten Mäuse mit Benz(a)pyren oder Uretan behandelt, entwickeln diese sehr viel häufiger Haut- und Lungenkrebs, was darauf hinweist, dass es sich bei RASSF1A um ein Tumorsupressorgen handelt (Tommasi et al., Cancer Research 2005).

1.2.4 Die Rolle von RASSF1 in der Zellzykluskontrolle

Wenn Epithelzellen aus Lungen- und Brustkrebstumoren, die kein RASSF1A mehr exprimieren, mit RASSF1A transfiziert werden, wird ein Zellzyklusarrest in der G1-Phase beobachtet, allerdings keine Apoptose (Shivakumar et al., Mol. Cell. Biol. 2002). Dieses Ereignis korreliert mit der Inhibierung von Cyclin-D1-Akkumulierung; die Akkumulierung von Cyclin-D1 ist notwendig, um den durch die Proteine aus der RB-

RASSF1 greift auch während der Mitose in die Zellzykluskontrolle ein. Die Progression der Mitose erfordert den proteolytischen Abbau Mitose-spezifischer Regulatorproteine wie Cyclin A und B. Die Ubiquitinligase \textit{anaphase-promoting complex} (APC, auch Cyclosom genannt) markiert die mitotischen Cycline A und B, die daraufhin proteolytisch abgebaut werden, und erlaubt so den Fortgang der Mitose. CDC20 bindet während der Mitose APC und aktiviert ihn.

Während der Mitose wird über den Spindle-Checkpoint die Integrität von Chromosomen sichergestellt, indem der Zellzyklus solange in der Metaphase angehalten wird, bis alle Chromosomen an der Mitosespindel befestigt sind. Solange die Chromosomen an der Mitosespindel nicht vollständig befestigt sind, inhibieren MAD2 und MAD3 die Ubiquitinilierungsaktivität des APC-CDC20-Komplexes. Wenn alle Chromosomen über ihre Kinetochore an der Mitosespindel befestigt sind, hört die Inhibierung des APC-CDC-20-komplexes durch MAD2 und MAD3 auf. Der APC-CDC20-Komplex kann nun die Anaphase einleiten, indem es den Separase-Inhibitor Securin inhibiert, wodurch Separase die Schwesterchromatide proteolytisch voneinander trennt. Wird RASSF1A in menschlichen HeLa- und 293T-Zellen überexprimiert, wird der Zellzyklus in der Prometaphase angehalten, indem RASSF1A an CDC20 bindet und so den APC-CDC20-Komplex inhibiert, während RASSF1C keinen Effekt auf den Zellzyklus hat. Die Inhibierung des Zykls wird in 293T-Zellen von einer Erhöhung der Konzentrationen von Cyclin A und B begleitet. Wenn in HeLa-Zellen durch RNA-Interferenz RASSF1A inaktiviert wird, wird eine Beschleunigung der
Mitose beobachtet. Die Inaktivierung von RASSF1A in humanen Präputiumfibroblasten hat Anomalitäten der mitotischen Spindel zur Folge, was darauf hindeutet, dass der Spindelcheckpoint ohne RASSF1A nicht voll funktionsfähig ist. (Song et al., Nature Cell Biology 2004).

1.2.5 Die Rolle von RASSF1 bei der Apoptose

Die ektopische Expression von RASSF1A in MCF-7-Zellen beschleunigt die extrinsische durch Todesrezeptoren induzierte Apoptose. Die Stimulierung der Todesrezeptoren führt zur Bildung eines Komplexes zwischen RASSF1A und dem Protein *BH3-like protein modulater of apoptosis*-1 (MAP-1). In „ruhenden“ Zellen liegt MAP1 in einer durch eine intramolekulare elektrostatische Interaktion bedingten inaktiven Konformation vor.

Nach der Stimulation von U2OS-Zellen mit TNFα werden RASSF1A und MAP-1 an den Todesrezeptorkomplex rekrutiert, wo sie miteinander assoziieren. Durch einen bislang unbekannten Mechanismus bewirkt RASSF1A dort eine Konformationsänderung von MAP-1, wobei die *BH3-like*-Domäne von MAP-1 demaskiert wird. Nun ist die *BH3-like*-Domäne von MAP-1 zugänglich für BAX und die Bindung von BAX an MAP-1 leitet die durch Mitochondrien vermittelte Apoptose ein (Baksh et al., Mol. Cell 2005). Durch die stabile Expression von einer *RASSF1A*-shRNA konnte die Expression von RASSF1A in U2OS-Zellen blockiert werden, was zum Verlust der Todesrezeptor-abhängigen Apoptose führte. Die intrinsische Apoptose blieb jedoch in den betreffenden Zellen intakt. Eine ähnliche Beobachtung konnte auch für *RASSF1A*-defiziente *maus embryonic fibroblasts* (MEF; *RASSF1A*−/−) gemacht werden (Baksh et al., Mol. Cell 2005). Offensichtlich ist RASSF1A in die Regulation der extrinsischen Todesrezeptor-abhängigen Apoptose involviert, zumindest in MCF-7-, MEF- und U2OS-Zellen.
1.2.6 Assoziation von RASSF1 mit Mikrotubuli

In Hefe-Two-Hybrid-Screens konnte gezeigt werden, dass RASSF1A an zahlreiche Mikrotubuli-assoziierte Proteine bindet. Zu diesen Proteinen gehören *microtubules associated protein 1A* und *B* (MAP1A und MAP1B) und C190RF5 (*chromosome 19 open reading frame 5*; auch RABP1 genannt: *RASSF1A-binding protein 1*). Eine direkte Interaktion zwischen RABP1 und RASSF1A konnte auch mithilfe von Immunfluoreszenz- und Immunpräzipitationsanalysen nachgewiesen werden. RABP1
liegt zusammen mit RASSF1A während des gesamten Zellzyklus mit dem Zentrosom assoziiert vor (Song et al., JBC 2005). Eine direkte Interaktion zwischen RASSF1A und MAP1B konnte auch in vitro durch Immunpräzipitationsexperimente bestätigt werden. GST-RASSF1A und HA-RASSF1A waren in der Lage MAP1B aus SK-N-AS-Zellen zu immunpräzipitieren.

In NCI-H-1299- und NCI-H-1437-Zelllinien kolokalisiert RASSF1A mit α/β-Tubulin und schützt die Mikrotubuli vor der depolymerisierenden Wirkung von Nocodazol. Es konnten zwei RASSF1A-Mutanten (C65R und R257Q) identifiziert werden, die nicht in der Lage waren, an Mikrotubuli zu binden und sie gegen die depolymerisierende Wirkung von Nocodazol zu schützen. Anders als Wildtyp-RASSF1A können diese beiden Mutanten die DNA-Synthese nicht inhibieren. Das ist möglicherweise ein Hinweis darauf, dass RASSF1A für seine tumorsuppressive Wirkung mit Mikrotubuli assoziiieren muss (Dallol et al., Cancer Research 2004).

1.2.7 NORE1/RASSF5

NORE ist auf dem Chromosom 1q32.1 lokalisiert und kommt in zwei unterschiedlichen Spleißvarianten vor: NORE1A und NORE1B. Aus dem mNORE1A-Transcript entsteht ein Protein mit einer Länge von 413 Aminosäuren und aus dem mNORE1B-Transcript ein Protein mit einer Länge von 265 Aminosäuren. NORE1A enthält N-terminal eine Prolin-reiche Domäne (PRD), gefolgt von einer atypischen C1-Domäne und einer RB-Domäne und C-terminal eine SARAH-Domäne. NORE1B verfügt C-terminal ebenfalls über eine RB- und SARAH-Domäne, enthält aber N-terminal eine einzigartige aus 40 Aminosäuren bestehende Sequenz (Abb. 12).
Abbildung 12: Maßstabgetreue schematische Darstellung der Domänenzusammensetzung von murinem NORE1A und -1B. Die Sequenzen 189-413 für NORE1A und 41-265 für NORE1B sind identisch (durch die gestrichelte Linie angedeutet). NORE1A enthält N-terminal ein NLS-Signal (71-108), was bei NORE1B fehlt (in der Abb. nicht gezeigt). NORE1A und NORE1B enthalten C-terminal ein NES-Signal. Die Positionen von N-terminalen Prolinresten sind durch schwarze Balken angedeutet.

Strukturell ähnelt die C1-Domäne von NORE1A denjenigen von RAF, PKC und der Diacylglycerolkinese. Typische C1-Domänen binden spezifisch Diacylglycerol oder Phorbolester. Mittels eines Protein-Lipid-Overlay-Assays konnte gezeigt werden, dass die C1-Domäne von NORE1A Phosphatidylinositol-3-Phosphat (PI3P) und Sulfatid bindet, nicht aber Diacylglycerol oder Phorbolester; folglich handelt es sich bei der C1-Domäne von NORE1A um eine atypische C1-Domäne (Harjes et al, Structure 2006).
Auf die Eigenschaften der SARAH-Domäne wurde bereits im Abschnitt 1.1.6 eingegangen und die Eigenschaften der RB-Domäne werden im Abschnitt 1.2.9 erläutert werden.

Auffällig ist, dass NORE1A und NORE1B eine homologe Domänenzusammensetzung zu RASSF1A und RASSF1C, den Haupttransskripten des RASSF1-Gens aufweisen (Abb. 7). RASSF1A und RASSF1C verfügen nämlich über eine identische RB- und SARAH-Domäne, unterscheiden sich jedoch an ihren N-Termini. Darüber hinaus besitzen NORE1 und RASSF1 eine hohe Sequenzidentität und -homologie; insbesondere in der Sequenz, die die RB- und SARAH-Domäne (das entspricht den 214 N-terminalen Aminosäuren) umfasst. Dort beträgt die Sequenzidentität 72 %. Auffällig unter den Spleißvarianten von NORE1 und RASSF1 ist auch, dass jeweils die Isoform A, die die N-terminale C1- und PR-Domäne enthält (also NORE1A und RASSF1A), in unterschiedlichen Tumorzellen sehr häufig inaktiviert vorliegt. Eine Inaktivierung von NORE1B und RASSF1C konnte dagegen nur in sehr wenigen Tumorzellarten beobachtet werden.

Die beiden Spleißvarianten von NORE sind an unterschiedlichen zellulären Prozessen beteiligt. Während NORE1A, ähnlich wie RASSF1A, an der Regulation von Zellzykluskontrolle, Apoptose, Stabilität von Mikrotubuli und Zellmotilität beteiligt ist, hat NORE1B eine wichtige Funktion bei der adaptiven Immunabwehr.

NORE1A kommt in fast allen bislang untersuchten Geweben vor, wird aber in bestimmten Krebszellen kaum oder gar nicht exprimiert. Zu den Krebszelllinien, bei denen die NORE1A-Exprimierung inhibiert ist, gehören u. a. das Lungenkarzinom A549, die promyelocytische Leukämie HL 60, das maligne Melanom G361, die lymphoblastische Leukämie und das Burkitt-Lymphom. NORE1B kommt hauptsächlich im lymphoiden Gewebe vor und liegt bei nur sehr wenigen Krebszelllinien inaktiviert vor (HeLa-, G361- und A549-Zellen). Im Vergleich zu RASSF1A wird NORE1 weniger durch Hypermethylierung der CpG-Inseln der Promotorregionen inaktiviert. Dazu zählen das NSCLC, das hepatozelluläre Karzinom, das Neuroblastom, das Clear cell renal-Karzinom und der Wilms-Tumor. In Lungenkrebszellen und in einigen anderen Krebszelllinien wie Brust-, Nieren- und Kopf-Hals-Karzinomen wird eine Deletion des NORE1-Lokus 1q32.1 beobachtet.
1.2.8 Tumorsuppressor-Aktivitäten von NORE1

Ein wichtiger Faktor für die proapoptotische Wirkung von NORE1A scheint dessen subzellularrä Lokalisation zu sein, wie mit NORE1-CAAX bereits gezeigt werden konnte. NORE1 besitzt an seinem C-Terminus innerhalb der SARAH-Domäne (372-379; Abb. 12) ein Kernexportsignal (NES), das unter den Mitgliedern der RASS-
Familie konserviert ist. NORE1A enthält zudem N-terminal auch ein Kernlokализationssignal (NLS), das bei NORE1B fehlt. Die Mutation der drei Leucinreste (L372A, L376A und L379A) des NES-Signals führte in COS-7-Zellen zu einer Lokalisation von NORE1A im Nukleus (Abb. 13).

Wenn Zellen mit dem Kernexportinhibitor Leptomycin B (LMB) behandelt werden, wird ebenfalls eine Lokalisation von NORE1A im Nukleus beobachtet (Abb. 14).
Abbildung 14: Subzelluläre Lokalisation von EGFP-NORE1A im Nukleus von COS-7-Zellen nach Behandlung mit 20 ng/ml LMB. Dargestellt ist auch die Färbung des Nukleus mit DAPI. Aus Park et al., 2008.

Mithilfe des pCaspase-3-Sensorsystems (Clontech®) konnte gezeigt werden, dass NORE1A seine proapoptotische Wirkung in COS-7-Zellen nur im Zytoplasma und mithilfe von MST1 entfalten kann. Denn die NES-Mutante von NORE1A (L372A/L376A/L379A), die ausschließlich im Nukleus lokalisiert ist, konnte keine Apoptose auslösen. Nur in mit Wildtyp-NORE1A transfizierten Zellen konnte die Induktion von Apoptose und eine Kolokalisation zwischen NORE1A und MST1 nachgewiesen werden (Park et al., BBRC 2008).

1.2.9 Assoziation von NORE1 mit dem Zytoskelett und Mikrotubuli

Durch den Einsatz von Softagar-Assays konnte gezeigt werden, dass in A549-Zellen die tumorsuppressive Wirkung von NORE durch das Fragment 191-363 vermittelt wird. Dieses Fragment umfasst ziemlich genau die RB-Domäne von NORE1. Die anderen NORE1A-Fragmente zeigten unter den gleichen Bedingungen keine tumorsupressive Aktivität. Vielmehr scheinen die PRD- und C1-Domäne, wenn sie als Konstrukt zusammen mit der RB-Domäne exprimiert werden, die wachstumshemmende Wirkung von NORE1A in A549-Zellen zu dämpfen, da ihre Deletion die Fähigkeit von NORE1A, Zellzyklusarrest in der G1-Phase zu induzieren und das Verankerungs-unabhängige Zellwachstum zu hemmen, vermindert. NORE1A liegt in normalen menschlichen Zellen (primary small airway epithelial cells und HBEC3-KT), in Zellen,

Für die tumorsuppressive Wirkung von NORE1A ist dessen Assoziation mit Mikrotubuli erforderlich, da NORE1A-Mutanten (Deletionsmutante 226-253), die nicht an Zentrosomen und Mikrotubuli binden können, in A549-Zellen keine tumorsuppressive Wirkung besitzen. NORE1A entfaltet seine tumorsuppressive Aktivität in A549-Zellen durch Inhibierung des ERK-Signaltransduktionsweges. Der ERK-Signaltransduktionsweg ist in diesen Zellen konstitutiv aktiv und wird durch die Expression von NORE1-191-363 inhibiert, was zu einem Wachstumsstopp führt. Für die Assoziation von NORE1A mit Mikrotubuli ist es nicht erforderlich, dass NORE1A an RAS bindet, weil Mutationen an NORE1A (K306E/F307A), die eine Assoziation mit
RAS verhindern, nicht zu einer Dissoziation von NORE1A von Mikrotubuli führen (Moshnikova et al., JBC 2006).

Mittels total internal reflection fluorescence microscopy (TIRFM) wurde gezeigt, dass NORE1-RB als Nukleationspunkt für Mikrotubuli dient und konzentrationsabhängig die mittlere Länge von Mikrotubuli verringert, wobei der Anteil an polymerisierstem Tubulin insgesamt anstieg (Promotionsarbeit von Christine Bee, 2009).
1.2.10 NORE1B und die Regulierung der Polarisation und Adhäsion von Lymphozyten

NORE1B wird auch als RAPl (regulator for cell adhesion and polarization enriched in lymphoid tissues) bezeichnet und spielt, wie der Name schon sagt, eine wichtige Rolle bei der Regulierung der Polarisation und Adhäsion im lymphoiden Gewebe. Nach Stimulation von T-Zellrezeptoren durch CXCL12 (ein Chemokin) im lymphoiden Gewebe von Mäusen wird dort eine Anreicherung von NORE1B beobachtet, wobei NORE1B mit RAP1 assoziiert vorliegt.

Durch unabhängige Methoden konnte gezeigt werden, dass NORE1B sowohl in vitro als auch in vivo an RAP1 bindet. Stieglitz et al. konnte mittels GDI-Assays zeigen, dass NORE nicht nur an RAS (K_D = 0,08 µM) sondern auch an RAP1A bindet, allerdings mit einer geringeren Affinität (K_D = 1,3 µM) (Stieglitz et al., EMBO 2008). Katagiri et al konnten mithilfe von Pulldown- und Hefe-Two-Hybrid-Assays ebenfalls belegen, dass NORE1B und RAP1 Interaktionspartner sind (Katagiri et al., Nature Immunology 2003).

RAP1 wird aktiviert, wenn Zellen durch Chemokine oder mithilfe von Antigenen über die T-Zellantigenrezeptoren stimuliert werden. Die Aktivierung von RAP1 ist notwendig für die Transmigration von Lymphozyten durch die Endothelzellen und für die Ausbildung der immunologischen Synapse mit APC. Nach der Aktivierung von RAP1 bildet NORE1B mit LFA-1 einen Komplex und wird zur leading edge der Zelle relokalisiert; darüberhinaus wird auch eine Anreicherung von NORE1B in immunologischen Synapsen beobachtet. Die durch NORE1B und RAP1 kontrollierte räumliche Verteilung von Integrinen induziert die Zellpolarisation und bewirkt die Motilität von T-Lymphozyten (Katagiri et al., Nature Immunology 2003).

Wie erwähnt bindet NORE durch die SARAH-Domäne an MST1 und es konnte durch Hefe-Two-Hybrid-Assays unter Benutzung von NORE1B als Köder gezeigt werden, dass MST1 ein downstream effector von NORE1B ist. Durch Immunfärbung konnte gezeigt werden, dass NORE1B und MST1 in Wildtyp-T-Zellen an der Zellperipherie kolokalisiert vorliegen, wenn Wildtyp- und NORE1B-defiziente T-Zellen mit dem Chemokin CCL21 stimuliert werden. In NORE1B-defizienten Zellen wird dagegen eine diffuse Verteilung von MST1 beobachtet (Abb. 17) (Katagiri et al., Nature Immunology 2006).
Abbildung 17: Lokalisation von NORE1B und MST1 in NORE1B Wildtyp- und NORE1B-defizienten T-Zellen nach Stimulation mit CCL21. NORE1B ist rot, MST1 gelb und der Zellkern blau gefärbt. Aus Katagiri et al., Nature Immunology 2006.

Die Aktivierung von MST1 in BAF-Zellen wird durch NORE1B und RAP1 vermittelt. Mittels in vitro immun kinase komplex assays wurde nachgewiesen, dass RAP1 in Zusammenarbeit mit NORE1B die Kinaseaktivität von MST1 gegenüber myelin basic protein (MBP) erhöht, wobei eine Autophosphorylierung von MST1 stattfand. In BAF-Zellen konnte darüberhinaus gezeigt werden, dass MST1 notwendig für die Zellpolarisation, die LFA-1-Umverteilung und die durch CXCL12 und RAP1G12V vermittelte Adhäsion notwendig ist. Wenn in BAF-Zellen durch RNA-Interferenz das MST1-Gen ausgeschaltet wird, sind diese nicht in der Lage eine polarisierte Zellform zu entwickeln und behalten ihre runde Form bei (Katagiri et al., Nature Immunology 2006).
1.3 RAS und seine Rolle in Apoptose

Kleine GTPasen haben eine hohe Affinität zu GDP und GTP und besitzen eine intrinsische GTP-Hydrolyseaktivität zu GTP. Sie sind nur in der GTP-gebunden Form aktiv und können ihre Effektoren binden. Kleine GTPasen werden von Guaninnukleotid-Austauschfaktoren (GEF) aktiviert, die den Austausch von GDP gegen GTP beschleunigen, und von GTPase-aktivierenden Proteinen inaktiviert, die die intrinsische GTPase-Aktivität erhöhen. Die Aktivität jeder GTPase wird durch einen charakteristischen Satz von GAPs und GEFs kontrolliert.

Nach ihrer Aktivierung binden RAS-Moleküle an Effektoren, die verschiedene Signalkaskaden aktivieren. Zu den am besten untersuchten Signaltransduktionswegen, die durch RAS kontrolliert werden, gehören die durch RAF (MAP-Kinase-Kaskade), Phosphoinositid-3-Kinase (PI3K), RAL-GDS und PLCε aktivierten Signaltransduktionswege. Auffällig ist, dass es sich bei den oben genannten RAS-Effektoren um Enzyme handelt, die Signaltransduktionswege kontrollieren, die eher dem Überleben und der Proliferation der Zelle dienen.

Eine wachsende Anzahl von wissenschaftlichen Publikationen legt nahe, dass die proapoptotischen und zellzyklushemmenden Effekte von RAS (zumindest teilweise) durch die Mitglieder der RASS-Familie vermittelt werden. Wie oben beschrieben, spielen RASSF1A und NORE1A in diesem Zusammenhang eine hervorragende Rolle. Neben RASSF1 und NORE1 konnte auch für RASSF2 und RASSF4 gezeigt werden, dass sie tatsächlich an RAS binden. Zu den anderen Mitgliedern der RASS-Familie liegen leider kaum Veröffentlichungen vor, sodass es noch nicht bekannt ist, ob sie auch an RAS binden können. Da NORE1 und RASSF1 spezifisch sowohl an MST1 als auch an RAS binden, erscheint es als plausibel, dass sie zusammen mit RAS den Zellzyklus kontrollieren, wobei die hier zugrundeliegenden Mechanismen noch nicht bekannt sind.

Im Unterschied zu den RAS-Effektoren, die das Überleben der Zelle sichern, besitzen Proteine aus der RASS-Familie keine enzymatische Aktivität und sind an keinerlei zellulären Prozessen beteiligt, die dem Überleben der Zelle dienen.
2 Zielsetzung der Arbeit

Wie erwähnt enthält MST1 N-terminal eine Kinase-Domäne, gefolgt von einer autoinhibitorischen und einer SARAH-Domäne. Die SARAH-Domäne befähigt MST1 nicht nur zur Bildung von Homooligomeren, sondern auch zur Bildung von Heterooligomeren mit NORE1, das ebenfalls über eine SARAH-Domäne verfügt. In diesem Zusammenhang soll mit Hilfe biochemischer und biophysikalischer Methoden untersucht werden, ob die SARAH-Domänen von MST1 und NORE1 die Bildung von Dimeren und möglicherweise auch von Tri- und Tetrameren ermöglichen.

NORE1 verfügt neben einer C-terminalen C1 und einer N-terminalen SARAH-Domäne auch über eine RAS-bindende Domäne; in diesem Zusammenhang soll auch der Einfluss von RAS auf die Komplexzusammensetzung zwischen MST1 und NORE1 untersucht werden; d.h., es soll überprüft werden, ob MST1, NORE1 und RAS in der Lage sind, zusammen einen stabilen Komplex zu bilden.

Gleichzeitig sollen Bedingungen ermittelt werden, unter denen die SARAH-Domänen von MST1 und NORE1 kristallisieren, um röntgenkristallographisch deren Strukturen bestimmen zu können. Außerdem sollen Bedingungen ermittelt werden, unter denen der NORE-SARAH- und MST1-SARAH-Heterokomplex kristallisiert.

3 Material und Methoden

3.1 Material

3.1.1 Oligonukleotide

Zur Klonierung der Konstrukte MST1-330-431 und MST1-362-487 wurden die folgenden Oligonukleotide verwendet:

MST1-330-431 sense \[\text{CG \, GGATCC \, ATG \, GTT \, CGA \, GCA \, GTG \, GGT \, GAT \, G}\]

MST1-330-431 antisense \[\text{CG \, GAATTC \, TCA \, TCC \, ATC \, CTG \, TGG \, TAT \, TTT \, CCA \, ATC \, TGA \, AGA \, ATT \, TTT}\]

MST1-362-487 sense \[\text{CG \, GGATCC \, CCA \, TCA \, CAA \, CTG \, GGC \, ACC \, ATG}\]

MST1-362-487 antisense \[\text{CG \, GAATTC \, TCA \, GAA \, GTT \, TTG \, TTG \, CCG \, TCT \, CTT \, CTT \, AG}\]

Die rot unterlegten Basen dienen zur Steigerung der Restriktionseffizienz von Endonukleasen und bei den blau unterlegten Basen handelt es sich um die Erkennungssequenzen von BamHI und EcoRI. Zur Klonierung wurden als Template humanes MST1 (in dem Plasmidvektor pQE) verwendet.

3.1.2 DNA-Konstrukte

Bei den durchgeführten Experimenten kamen folgende DANN-Konstrukte zu Einsatz:

MST1-330-487, MST1-330-431 und MST1-337-487 aus Homo Sapiens in pGEX4T1-N-TEV (GE-Healthcare, Freiburg)

NORE1-199-413 und NORE-370-413 aus Mus musculus in pGEX4T1 (GE-Healthcare, Freiburg)

H-RAS und H-RAS-1-166 aus Homo sapiens in pTac
3.1.3 Enzyme und Proteine

* * *

Taq-DNA-Polymerase
Fermentas (St. Leon-Rot)

Pfu-DNA-Polymerase
Fermentas (St. Leon-Rot)

T4-DNA-Ligase
Fermentas (St. Leon-Rot)

EcoRI
Fermentas (St. Leon-Rot)

BamHI
Fermentas (St. Leon-Rot)

Alkalische Phosphatase
Fermentas (St. Leon-Rot)

Thrombin
Serva (Heidelberg)

Ovalbumin
Sigma Aldrich (Steinheim)

Lysozym
Sigma Aldrich (Steinheim)

3.1.4 Proteinstandards

* * *

Page Ruler (14,4, 18,4, 25, 35, 45, 66,2 und 112 kDa)
Fermentas (St. Leon-Rot)

3.1.5 Reagenziensätze (Kits)

* * *

QIAprep Plasmid Miniprep Kit
Qiagen (Hilden)

QIAquick Gel Extraction Kit
Qiagen (Hilden)

Classics Suite
Qiagen (Hilden)

Cryos Suite
Qiagen (Hilden)

JCSG Suite
Qiagen (Hilden)

MB Class Suite
Qiagen (Hilden)
MB Class II Suite Qiagen (Hilden)
PEG Suite Qiagen (Hilden)
PACT Suite Qiagen (Hilden)
Gelfiltration molecular weight markers Sigma Aldrich (Steinheim)

3.1.6 *E.coli*-Stämme

TG1 \(\Delta lac\text{-}pro, thi\text{-}1, supE, hsdD5, (F^{\text{'traD36, proAB}^+}, lacZ\Delta M15, lacI^Q}\) (Gibson, 1984)

BL21 (DE3) F\text{-, ompT, hsdS}(r_B, m_B^+), gal, dcm, (DE3) (Studier und Molfatt, 1986)

3.1.7 Nährmedien für Zellkulturen und Antibiotika

LB-Selektivmedium 10 g/L Bactotrypton, 5 g/L Hefeextrakt, 10 g/L NaCl, 5mM NaOH

TB-Medium 12 g/L Bactotrypton, 24 g/L Hefeextrakt, 4 mL/L Glycerol, 17 mM KH\(_2\)PO\(_4\), 72 mM K\(_2\)HPO\(_4\)

Ampicillin Sigma Aldrich (Steinheim)
Kanamycin Sigma Aldrich (Steinheim)
Chloramphenicol Sigma Aldrich (Steinheim)

3.1.8 Puffer und Lösungen

PX 50 mM Tris-HCl (pH 7,4), 5 mM MgCl\(_2\)
DNA-Probenpuffer (6 x) 0,25 % (w/v) Bromphenolblau, 0,25 % (w/v) Xylencyanol, 30 % (v/v) Glycerol

Acrylamidlösung 30 % (w/v) Acrylamid, 0,8 % (w/v) Bisacrylamid

TAE 40 mM Tris-HCl pH 8, 40 mM AcOH, 1mM EDTA

SDS-Trenngelpuffer 1,5 M Tris-HCl pH 8,8; 4% (w/v) SDS

SDS-Sammelgelpuffer 1,0 M Tris-HCl, pH 6,8; 4% (w/v) SDS

SDS-Probenpuffer (5x) 0,05 M Tris-HCl pH 6,8, 50 % (w/v) Glycerol, 10 % (w/v) SDS, 10 mM β-Mercaptoethanol, Spatelspitze Bromophenolblau

Färbelösung 40 % (v/v) Ethanol, 10 % (v/v) Essigsäure, 50 % (v/v) je 0,6 g Coomassie Brillantblau R 250 und Coomassie Brillantblau G 250

Entfärbelösung 20 % (v/v) Ethanol, 10 % (v/v) Essigsäure, 70% (v/v) Wasser

HPLC-Puffer 10 mM Tetrabutylammoniumbromid (TBA-Br), 100 mM K₂HPO₄, 100 mM KH₂PO₄ pH 6,5, 2,3 % (v/v) Acetonitril

TSS-Puffer 85 % LB-Selektivmedium, 10 % (w/v) PEG 8000, 5 % (v/v) DMSO, 50 mM MgCl₂ pH 6,5

Zentrifugenkonzentratoren Sartorius (Göttingen)
dNTP-Mischung dGTP, dATP, dCTP, dTTP

GppNHp Jena Bioscience (Jena)

GTP Sigma Aldrich (Steinheim)

GDP Sigma Aldrich (Steinheim)

GMP Sigma Aldrich (Steinheim)
3.1.9 Säulenmaterialien für HPLC

Gluthathion Sephaprose 4B
GE Healthcare (Freiburg)

DEAE-Sepharose Fast Flow
GE Healthcare (Freiburg)

Superdex 75 und 200
GE Healthcare (Freiburg)

3.1.10 Chemikalien

Die Chemikalien wurden von den Firmen Merck (Darmstadt), Fluka (Neu-Ulm), Sigma Aldrich (Steinheim), Quiagen (Hilden), Serva (Heidelberg), Roth (Karlsruhe), Applichem (Darmstadt), Riedel de Haen (Seelze) und GE Healthcare (Freiburg) bezogen.
3.2 Methoden

3.2.1 Molekularbiologische Methoden

3.2.1.1 Polymerasekettenreaktion

Bei der Polymerasekettenreaktion (PCR) handelt es sich um eine Methode zur Amplifikation von ausgewählten DNA-Abschnitten. Zunächst wird ein Oligonukleotidpaar (Primer), das die zu amplifizierende Sequenz flankiert, chemisch synthetisiert. Dabei sollte auf folgende Punkte geachtet werden: Die Primer sollten eine genügend hohe und möglichst ähnliche Schmelztemperatur besitzen; sie sollten an den 3'-Enden möglichst wenig A- oder T-Basen besitzen und ein ausgeglichenes A/T- bzw. G/C-Verhältnis aufweisen. Zudem sollten sie keine Sekundärstrukturen ausbilden; wenn dies nicht vermeidbar ist, kann DMSO zur Destabilisierung der Sekundärstrukturen eingesetzt werden.

Die Trennung der dsDNA (des Templates, das die zu amplifizierende DNA enthält) in ssDNA geschieht durch Erhitzen auf 95 °C. Anschließend wird das Reaktionsgemisch auf eine von den Primern abhängige Temperatur (annealing temperature, typischerweise 55 °C) abgekühlt, wobei die Primer mit den komplementären Sequenzen der ssDNA hybridisieren. Dies ermöglicht der hitzestabilen DNA-Polymerase von den Primern ausgehend unter Verbrauch von dNTP’s bei 72 °C die gewünschte Sequenz zu synthetisieren. Der gesamte Zyklus wird etwa 30-40 Mal wiederholt; bei etwa 40 Zyklen wird die höchste Amplifikation erreicht, weswegen eine höhere Anzahl von Amplifikationszyklen nicht sinnvoll ist (Joe O’Connel, 2002). Die DNA-Synthese wird mit fortschreitendem Verbrauch von dNTP’s und Primern ineffizient. Deswegen wird nach dem letzten Zyklus die Vervollständigung bisher nicht vollendeter DNA-Sequenzen durch die Polymerase ermöglicht, indem der PCR-Ansatz 5-15 Min. auf 72°C erhitzt wird. Ein typischer Reaktionsansatz und ein typisches PCR-Programm sind in der Tabelle 1 und 2 angegeben.
<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-Puffer</td>
<td>1 x</td>
</tr>
<tr>
<td>dNTP-Mix</td>
<td>0,2 mM</td>
</tr>
<tr>
<td>Primer sense</td>
<td>0,4 µM</td>
</tr>
<tr>
<td>Primer antisense</td>
<td>0,4 µM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>1 U/25 µl</td>
</tr>
<tr>
<td>Vektor-DNA</td>
<td>100 ng</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>25 µL</td>
</tr>
</tbody>
</table>

Tabelle 1: Zusammensetzung eines typischen PCR-Reaktionsansatzes

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur (°C)</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>95</td>
<td>5 Min.</td>
</tr>
<tr>
<td>2.</td>
<td>95</td>
<td>2 Min.</td>
</tr>
<tr>
<td>3.</td>
<td>55</td>
<td>1 Min.</td>
</tr>
<tr>
<td>4.</td>
<td>72</td>
<td>2 Min.</td>
</tr>
<tr>
<td>5.</td>
<td>72</td>
<td>5 Min.</td>
</tr>
</tbody>
</table>

Tabelle 2: Ein typisches PCR-Programm zur Amplifikation von DNA

Das PCR-Programm und die Konzentration der Substanzen zur cDNA-Synthese können abhängig von der DNA-Polymerase, der Annealingtemperatur und der Länge der Primer und der Länge der zu amplifizierenden Sequenzen variiert werden. Dienen die PCR-Produkte analytischen Zwecken, so ist die Verwendung der *Taq*-Polymerase zu empfehlen, da sie eine höhere Prozessivität besitzt. Die *Taq*-Polymerase besitzt jedoch keine Korrekturleaseaktivität (3’- 5’- Endonukleaseaktivität) und sollte nicht für PCR-Reaktionen eingesetzt werden, deren Produkte fehlerfrei sein sollten. In solchen Fällen kann die *Pfu*-Polymerase eingesetzt werden.
die eine Korrekturleseaktivität besitzt. Ihr Nachteil im Vergleich zu der Taq-Polymerase ist ihre geringere Prozessivität aufgrund ihrer Korrekturleseaktivität.

3.2.1.2 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentration von DNA wird bei einer Wellenlänge von 260 nm mithilfe des Lambert-Beerschen Gesetzes bestimmt, da Nukleinsäuren bei dieser Wellenlänge ihr Absorptionsmaximum besitzen. Die Proben müssen so verdünnt werden, dass die zu messende Absorption den Linearitätsbereich von 0,3 bis 1,2 nicht überschreitet. Gleichzeitig kann auch die Absorption bei 280 nm gemessen werden, um die Verunreinigungen durch Proteine quantifizieren zu können. Die Konzentration ergibt sich dann aus Gleichung 1.

\[A_{260} = \varepsilon_{260} l c \]

Gleichung 1

Mit \(A_{260} = \) Absorption bei 260 nm, Mit \(\varepsilon_{260} = \) Absorptionskoeffizient bei 260 nm, \(l = \) Weglänge in cm und \(c = \) Konzentration in mol/L. Die Absorptionskoeffizienten einzelsträngiger DNA-Moleküle setzen sich linear aus den Absorptionskoeffizienten der einzelnen Nukleotide zusammen (für Adenosin 15200 mol\(^{-1}\) cm\(^{-1}\) L, für Cytosin 7050 mol\(^{-1}\) cm\(^{-1}\) L, für Guanosin 12010 mol\(^{-1}\) cm\(^{-1}\) L und Thymin 8400 mol\(^{-1}\) cm\(^{-1}\) L) (Wallace et al., Methods Enzymol. 1987). Die Absorptionskoeffizienten doppelsträngiger DNA-Moleküle sind wegen des Hypochromie-Effekts kleiner als die Summe der Absorptionskoeffizienten der einzelnen Stränge, aus denen sich die doppelsträngige DNA zusammensetzt. Der Hypochromie-Effekt kann durch Gleichung 2 und 3 berücksichtigt werden.

\[\varepsilon_D = (1 - h_{260})(\varepsilon_{S1} + \varepsilon_{S2}) \]

Gleichung 2

\[h_{260} = 0,287 f_{AT} + 0,059 f_{GC} \]

Gleichung 3
Mit $\varepsilon_D = \text{Absorptionskoeffizient doppelsträngiger DNA}$, $h_{260} = \text{Hypochromie bei 260 nm}$, ε_{S1} und $\varepsilon_{S2} = \text{Absorptionskoeffizient einzelsträngiger DNA}$, aus denen sich der Doppelstrang zusammen setzt, f_{AT} und $f_{GC} = \text{Fraktionen von AT- und GC-Basenpaaren}$.

3.2.1.3 Agarosegelelektrophorese

3.2.1.4 Aufreinigung von DNA aus Agarosegelen

Die Aufreinigung von DNA aus Agarosegelen erfolgt mithilfe des Gelextraktionskits der Firma Qiagen nach Angaben des Herstellers.
3.2.1.5 Restriktionsverdau von DNA-Fragmenten

Bevor DNA-Fragmente mit einem Vektor ligiert werden können, müssen sowohl das Insert als auch der Vektor vorher mit den entsprechenden Restriktionsenzymen restringiert werden. In einem typischen Ansatz werden etwa 1 µg aufgereinigte DNA, die entsprechende Menge an Restriktionsenzym und der entsprechende Puffer zusammengegeben und mit sterilem Wasser auf 50 µl aufgefüllt. Die Gleichung 2 erlaubt die Berechnung der zu verwendenden Menge der Restriktionsendonukleasen, die für eine zweistündige Restriktion benötigt wird:

\[U \ t = (L_\lambda/L_V) (N_V/N_\lambda) m_V \]
Gleichung 4

Mit \(U \) = Unit (1µg Umsatz pro Stunde), \(t \) = Zeit an Stunden, \(m \) = Masse in µg, \(N \) Anzahl der Schnittstellen, \(L \) = Länge der Sequenz, Index \(V \) = Probe und Index \(\lambda \) = Genom des \(\lambda \)-Phagen (Referenzgenom).

Die Restriktion erfolgt bei dem Temperaturoptimum (in der Regel bei 37 °C) des betreffenden Enzmys. Vor der Hitzeinaktivierung der Restriktionsenzyme wird dem Restriktionsansatz alkalische Phosphatase zugesetzt und für 30 Min. bei 37 °C inkubiert, um eine Religation zu verhindern. Bevor mit der Ligation fortgefahren werden kann, wird die DNA nach der Restriktion nochmals gereinigt, um das Insert in reiner Form zu erhalten.

3.2.1.6 Ligation von DNA-Fragmenten

Die Ligation eines DNA-Abschnitts mit einem Expressionsvektor erfolgt mit Hilfe der T4-Ligase. Ein typischer Ligationsansatz enthält 1-2 U T4-Ligase, 1-2 µl Vektor-DNA (10-20 ng), Ligasepuffer und einen fünffachen Überschuss an Insert-DNA.

Die Ligation von DNA-Fragmenten mit kohäsiven Enden erfolgt für zwei Stunden bei 37 °C. Danach kann der Ligationsansatz direkt für eine Transformation eines Klonierungsstamms wie TG1 eingesetzt werden.
3.2.1.7 Herstellung kompetenter *E. coli*

5 mL LB-Selektivmedium werden mit einem geeignetem *E. coli*-Stamm geimpft und über Nacht wachsen gelassen. Mit 1 mL dieser Übernachtkultur werden 100 mL LB-Selektivmedium geimpft und bis zu einer OD_{600nm} von 0,3-0,5 wachsen gelassen. Danach werden die Bakterien für 20 Min. auf Eis inkubiert, bei 1200 g und 4°C zentrifugiert und das Sediment in 10 mL eiskaltem TSS-Puffer resuspendiert. Die so kompetent gemachten Bakterien werden mit flüssigem Stickstoff schockgefroren und in 50 µl Aliquots bei –80 °C gelagert.

3.2.1.8 Transformation kompetenter *E. coli*

3.2.1.9 Isolierung von Plasmid-DNA aus *E. coli*

3.2.1.10 Colony-PCR

3.2.2 Proteinbiochemische Methoden

3.2.2.1 Expressionstest von Proteinen

Diese Methode dient zur Feststellung der Überexpression von rekombinant hergestellten Proteinen in Expressionsstämmen von *E. coli*. Es werden 5 mL LB-Selektivmedium mit einem Teil einer Kolonie angeimpft, bei 37 °C im Schüttler bis zu einer OD_{600 nm} von 0,4 – 0,6 wachsen gelassen und mit 0,1 mM IPTG bei 25 °C über Nacht induziert. Vor und nach der
Induktion werden Proben von jeweils 200 µL entnommen, 1 Min. lang bei etwa 17000 g zentrifugiert und der Überstand verworfen. Das Zellpellet wird in 100 µl SDS-Probenpuffer resuspendiert und davon etwa 10 µL auf ein SDS-Gel aufgetragen.

Um die Proteinexpression zu verbessern, kann die Temperatur, bei der die Zellen wachsen und induziert werden, die OD, bei der die Proteinexpression induziert wird, die Konzentration des IPTG und die Dauer der Expression variiert werden. Wenn die Überexpression erfolgreich verlief, werden größere Mengen von Zellen kultiviert und daraus das rekombinante Protein isoliert.

3.2.2.2 Zellanzucht im präparativen Maßstab

Zunächst werden 100 ml TB-Selektivmedium mit der entsprechenden Glyceroldauerkultur angeimpft und über Nacht bei 37 °C und 130 rpm im Schüttelinkubator wachsen gelassen. 10 L TB-Selektivmedium werden mit der Übernachtkultur versetzt und bei 37 °C so lange wachsen gelassen, bis eine OD₆₀₀ nm von 0,8-1 erreicht ist. Anschließend erfolgt die Induktion der Proteinexpression mit 100 µM IPTG (Endkonzentration) bei 25 °C über Nacht. Vor und nach der Induktion werden Proben entnommen und mittels SDS-PAGE wird überprüft, ob die Überexpression erfolgreich verlief. Die Zellkulturen werden dann bei 4°C und 6000 g für 15 Min. sedimentiert, der Überstand verworfen und die Zellen mit einem geeigneten Puffer (mit 1 mM PMSF als Serin-Threoninproteaseinhibitor) resuspendiert. Der Aufschluss der Zellen erfolgt entweder mit einer Ultraschallbehandlung oder in einem Fluidizer. Der Zellaufschluss durch Ultraschall wird durchgeführt, indem die Sonotrode des Ultraschallgerätes in die Zellsuspension getaucht wird und in bestimmten Intervallen die Zellen durch Ultraschallpulse aufgeschlossen werden. Da bei diesem Vorgang viel Wärme freigesetzt wird, sollte die Zellsuspension stets in einem Eisbad gekühlt und der Aufschluss alle zwei Minuten unterbrochen werden. Weiterhin sollte vermieden werden, dass die Zellsuspension zu viskos ist, da ansonsten der Aufschluss nur unvollständig ist. Beim Aufschluss in einem Fluidizer werden die Zellen unter hohem Druck durch eine feine Düse gepresst, wobei Scherkräfte die Zellmembran auseinanderreißen. Hierbei sollte auch darauf geachtet werden, dass sich die Zellsuspension nicht zu sehr erwärmt. Nach dem Aufschluss wird die Zellsuspension bei 65000 g und 4 °C sedimentiert, um die löslichen Bestandteile von den Zelltrümmern zu
trennen. Der Überstand wird durch Dekantieren vom Zellpellet getrennt und kann dann so weiter aufgearbeitet werden.

3.2.2.3 SDS-Polyacrylamidgelelektrophorese

3.2.2.4 Bioaffinitätschromatographie

3.2.2.5 Ionenaustauschchromatographie

3.2.2.6 Konzentrierung von Proteinen

Zentrifugieren der Proteinlösung werden niedermolekulare Substanzen zusammen mit Wasser durch die Membranporen gepresst, wohingegen hochmolekulare Substanzen wie Proteine ab einer bestimmten Größe zurückgehalten werden. Die Ausschlussgröße der Membranporen sollte höchstens die Hälfte der Masse des Proteins (in kDa) ausmachen, weil ansonsten bei der Konzentrierung zu viel Protein verloren gehen kann. Alle NORE1- und MST1-Konstrukte wurden auf diese Art und Weise konzentriert.

3.2.2.7 Größenausschlusschromatographie

Die Größenbestimmung eines Proteins mittels Gelfiltration ist nur dann erfolgreich, wenn die Größe des betreffenden Proteins den linearen Trennbereich des Säulenmaterials nicht überschreitet und das Protein gut gefaltet ist und eine sphärische Form hat. Dies ist leider
nicht immer der Fall, da nicht alle Proteine eine sphärische Form haben. Außerdem können Proteine nichtgegelfaltete Regionen mit einem großen hydrodynamischen Radius aufweisen.

3.2.2.8 Austausch proteingebundener Nukleotide

3.2.2.9 Analyse von Nukleotiden mittels Umkehrphasen-HPLC

Zur Überprüfung des Nukleotidaustausches werden auf die HPLC-Säule zunächst Nukleotidstandards mit bekannter Konzentration (50 µM) aufgetragen und anschließend eine 50-mikromolare RAS-Probe. Die Retentionszeit der in der RAS-Probe enthaltenen Nukleotide wurde dann mit den Retentionszeiten der Standards verglichen.

3.2.2.10 Bradford-Assay

Zur Konzentrationsbestimmung von NORE1, MST1 und RAS wurden 20 µL einer genügend verdünnten Proteinlösung mit 1 mL des Bradford-Reagens (Thermo Scientific, Schwerte) vermischt, 5 Min. bei Raumtemperatur inkubiert und die Absorption gemessen. Als Referenz diente reines Bradford-Reagens.

3.2.2.11 UV-Spektrometrische Konzentrationsbestimmung von Proteinen

Die Konzentrationsbestimmung von Proteinen kann auch spektrometrisch durch die Messung der Absorption bei 280 nm erfolgen. Der Absorptionskoeffizient eines Proteins bei 280 nm (in 6 M Guanidinhydrochlorid und 20 mM Phosphat-Puffer bei pH 6,5) wird in erster Linie durch die Absorptionskoeffizienten von Tryptophan- (5800 M⁻¹ cm⁻¹) und Tyrosin- (1475 M⁻¹ cm⁻¹) und zu einem geringeren Teil durch den Absorptionskoeffizienten von Cystin (120 M⁻¹ cm⁻¹)

Der Absorptionskoeffizient eines Proteins kann mithilfe von Gleichung 3 berechnet werden.

\[
\varepsilon_{\text{Protein}} = N(Tyr) \varepsilon(Tyr) + N(Trp) \varepsilon(Trp) + N(\text{Cystin}) \varepsilon(\text{Cystin}) \quad \text{Gleichung 5}
\]

Mit \(\varepsilon \) = Absorptionskoeffizient in mol\(^{-1}\)cm\(^{-1}\)L, \(N \) = Anzahl der betreffenden Aminosäuren.

Die Konzentration des Proteins kann dann mithilfe von Gleichung 4 berechnet werden.

\[
c_{\text{Protein}} = A / \varepsilon_{\text{Protein}} \quad \text{Gleichung 6}
\]

Mit \(c_{\text{Protein}} \) = Konzentration des Proteins, \(A \) = gemessene Absorption und \(\varepsilon_{\text{Protein}} \) = Absorptionskoeffizient des Protein in mol\(^{-1}\)cm\(^{-1}\)L.

Die Konzentration von NORE1 und MST1 werden bestimmt, in dem die Proteine mit 6 M Guanidinhydrochlorid (20 mM Phosphatpuffer, pH 6,5) vermischt und anschließend die Absorption in einer Quarzküvette bei 280 nm bestimmt wird.

3.2.2.12 Konjugation von Proteinen

Die meisten Aminosäuren mit hydrophoben Seitenketten (Glycin, Alanin, Valin, Leucin, Isoleucin, Prolin und Phenylanin) spielen für Konjugationsreaktionen kaum eine Rolle, da sie einerseits chemisch sehr reaktionsträge sind und andererseits sich im Kern von Proteinen befinden, wo sie für chemische Agenzien nicht zugänglich sind.

3.2.2.13 Kristallisation von Proteinen

Die Röntgenstrukturanalyse ist neben Kernspinresonanzspektroskopie die einzige Methode, um detaillierte Informationen über die Struktur von Proteinen zu erhalten. Die Grundvoraussetzung für die Röntgenstrukturanalyse ist die Züchtung von Proteinkristallen.

sie die Denaturierung von Proteinen bewirken können. MPD vereinigt als Fällungsmittel unterschiedliche Eigenschaften: Erniedrigung der relativen Permittivität des Wassers, Konkurrenz um Wasser und Detergenz-ähnliche Effekte.

In der Regel werden Fällungsmittel nicht alleine eingesetzt, sondern mit einander kombiniert. Zusätzlich können auch Übergangsmetalle als Additive hinzugegeben werden (wie Cd$^{2+}$, Co$^{2+}$ und Mg$^{2+}$). Sie können durch die Bildung von Koordinationsbindungen die Kristallisation einleiten oder die Auflösung der Struktur verbessern.

Der wichtigste Faktor für die Kristallisation ist neben der chemischen Zusammensetzung der pH-Wert der Lösung, weswegen in vielen Kristallisationsansätzen Puffer enthalten sind. Die Kristallisation kann durch Variation des pH-Wertes induziert oder es können dadurch die Kristalle verbessert werden. Ein anderer wichtiger Faktor für die Kristallisation ist die Temperatur, insofern als sie die Löschlichkeit von Proteinen beeinflusst: In salzigen Lösungen kann eine Erniedrigung der Temperatur zu einer Erhöhung und in PEG- und MPD-Lösungen zu einer Erniedrigung der Proteinlöslichkeit führen.

Die Kristallisation von NORE1- und MST1-SARAH erfolgte mithilfe der Dampfdiffusions-Methode bei 18°C. Bei der Dampfdiffusions-Methode wird zunächst die Proteinlösung mit der Lösung, die das Fällungsmittel enthält, 1:1 vermischt. Dabei halbiert sich sowohl die Proteinkonzentration als auch die Fällungsmittelkonzentration. Platziert man nun den Tropfen (als hanging oder sitting drop) über eine Reservoirlösung, die das Fällungsmittel enthält, und versiegelt diese, kommt es zu einer Dampfdiffusion zwischen dem Tropfen und der Reservoirlösung, die so lange andauert, bis der Tropfen die gleiche Fällungsmittelkonzentration erreicht hat wie die Reservoirlösung. Da das Volumen des Tropfens einen Bruchteil des Volumens der Reservoirlösung (oft 1:100-1:1000) ausmacht, steigt die Konzentration des Proteins, bis eine übersättigte Lösung vorliegt, in der unter Umständen Proteinkristalle wachsen können.

reproduzieren. Danach erfolgt die Optimierung der Kristalle durch Variation der Kristallisationsbedingungen (in der Regel mit der Hanging-Drop-Methode).

3.2.2.14 Dynamische Lichtstreuung

Mithilfe der Dynamischen Lichtstreuung (DLS) kann die Größe von Partikeln und Proteinen, die als Lösung oder Suspension vorliegen, bestimmt werden. Die Methode ist auch als Quasielastische Lichtstreuung (QELS) oder Photonenkorrelationsspektroskopie (PCS) bekannt.

Bei der DLS wird die Diffusionsgeschwindigkeit von Partikeln bestimmt, indem die Geschwindigkeitsrate der Intensitätsfluktuationen gestreuter elektromagnetischer Strahlung gemessen wird. Wenn elektromagnetische Strahlung auf gelöste Substanzen in einer Lösung oder auf Partikel in einer Suspension trifft, dienen diese als Streuzentren und streuen die Photonen in alle Richtungen, wobei es zu destruktiven und konstruktiven Interferenzen kommt. Die Intensität der gestreuten Strahlung ist proportional zu d^6 ($d =$ Durchmesser der Partikel) und $1/\lambda^4$ ($\lambda =$ Wellenlänge der Strahlung). Da die Partikel aufgrund der brownschen Molekularbewegung ständig diffundieren, fluktuiert die Intensität der gestreuten elektromagnetischen Strahlung. Mithilfe eines digitalen Autokorrelators kann die zeitabhängige Intensitäts-Intensitätskorrelationsfunktion der gestreuten Strahlung bestimmt werden (Gleichung 5).

$$G(\tau) = \frac{1}{2} \langle I(t)I(t + \tau) \rangle$$ Gleichung 7

Mit $G(\tau) =$ Autokorrelationsfunktion, $I =$ Streuintensität $t =$ Zeitpunkt beim Beginn der Autokorrelation, $\tau =$ Zeitverzögerung des Korrelators.

Für monodisperse Partikel in brownscher Molekularbewegung ist die Autokorrelationsfunktion eine Funktion von τ (Gleichung 6)

$$G(\tau) = A(1 + Be^{-2\tau})$$ Gleichung 8
Mit A = Hintergrund der Korrelationsfunktion, B = Kohärenzfaktor und \(\Gamma \) = Gleichung 7

\[\Gamma = Dq^2 \] Gleichung 9

mit D = translationaler Diffusionskoeffizient und q = Gleichung 8

\[q = \left(\frac{4\pi n}{\lambda_0} \right) \sin \left(\frac{\theta}{2} \right) \] Gleichung 10

mit n = Brechungsindex des Mediums, \(\lambda_0 \) = Wellenlänge des Lasers und \(\theta \) = Streuwinkel.

Unter Nutzung der Stokes-Einstein-Gleichung (Gleichung 9) und durch die Anpassung einer einfachen Exponentialfunktion an die Autokorrelationsfunktion kann der hydrodynamische Radius eines Proteins ermittelt werden.

\[D = \frac{kT}{6\pi\eta R_H} \] Gleichung 11

mit k= Boltzmann-Konstante, T= absolute Temperatur in Kelvin, \(\eta \) = Viskosität des Lösungsmittels und \(R_H \) = hydrodynamischer Radius des Partikels.

3.2.2.15 Differential Scanning Calorimetry

Bei der differential scanning calorimetry (DSC) wird die Wärmekapazität ($C_p(T)$) von in Lösung befindlichen Molekülen als eine Funktion der Temperatur gemessen. Eine DSC-Apparatur besteht aus zwei Zellen, wobei eine Zelle mit der Proteinlösung gefüllt wird und die andere nur mit Puffer. Die Zellen sind nach außen hin thermisch isoliert. Sie werden dann mit etwa 1 K/min. erhitzt. Da sich die Wärmekapazitäten der Probenzelle und der Referenzzelle unterscheiden, ist eine unterschiedliche Energiemenge nötig, um die Temperaturdifferenz zwischen ihnen auf Null zu halten. Diese Differenz kommt dadurch zustande, dass bei der Entfaltung des Proteins in der Probenzelle Wärme aufgenommen wird. Die Leistungsdifferenz ($J \, s^{-1}$) ist nach Normalisierung durch die Scannrate ($K \, s^{-1}$) ein Maß für die Differenz der Wärmekapazität des Lösungsmittels und der Lösung ($C_p = C_p^{\text{Lösung}} - C_p^{\text{Lösungmittel}}$, in J K$^{-1}$). Um hieraus die spezifische Wärmekapazität ($C_p(T)$; in J K$^{-1}$ g$^{-1}$) des Proteins zu bestimmen, wird C_p durch die Masse des Proteins geteilt. Schließlich wird durch die Multiplikation von $C_p(T)$ mit der Molmasse des Proteins die molare Wärmekapazität (J K$^{-1}$ mol$^{-1}$) des Proteins erhalten. Beim Erhitzen einer Proteinlösung durchläuft die Kurve für die Wärmekapazität ein Maximum. Dieses Maximum wird als die Schmelztemperatur (T_M; in K) des betreffenden Proteins bezeichnet. Die Faltungsenthalpie (ΔH_{Falt}) des Proteins kann aus der Integration der Fläche unter der Funktion für die Wärmekapazität erhalten werden.

3.2.2.16 Circulardichroismus-Spektroskopie

Da Proteine, bis auf Glycin, aus L-Aminosäuren aufgebaut sind, besitzen sie optische Aktivität und drehen die Polarisationsenebene zirkular polarisierter elektromagnetischer Strahlung. Sekundärstrukturelemente von Proteinen haben charakteristische CD-Spektren. Mithilfe der CD-Spektroskopie kann untersucht werden, ob ein Protein Sekundärstrukturelemente aufweist, und wenn ja, wie hoch deren Anteil ist. CD-Spektren werden gewöhnlich bei Wellenlängen von etwa 180-250 nm aufgenommen.
4 Ergebnisse

4.1 Komplexzusammensetzung des NORE- und MST1-Homooligomers und des NORE-MST1-Heterooligomers

Proteine aus der hRASSF-Familie, hMST1, hMST2 und hWW45 verfügen an ihren C-Termini über eine sogenannte SARAH-Domäne, die etwa 50 Aminosäuren umfasst (L. van der Weyden). Strukturvoraussagealgorithmen (z.B. Coils-2) zufolge handelt es sich bei der SARAH-Domäne um einen Coiled Coil (Hartmut Scheel and Kay Hofmann).

Charakteristisch für Coiled Coils ist die Wiederholung eines Sequenzmotivs aus sieben Aminosäureresten, dessen Positionen mit a-g bezeichnet werden. Gewöhnlich befinden sich an den Positionen a und d hydrophobe Aminosäuren, wohingegen die Positionen e und g häufig von polaren und/oder geladenen Aminosäureresten belegt werden. Verantwortlich für die Bildung des Coiled Coils ist die intermolekulare komplementäre Interaktion hydrophober Aminosäurereste an den Positionen a und d. Die Stabilität von Coiled Coils wird durch inter- und intrahelikale elektrostatische Wechselwirkungen moduliert; insbesondere an den Positionen e und g (Jiu et al, 2006).

Die SARAH-Domäne von MST1 und NORE1 ermöglicht diesen beiden Proteinen nicht nur die Bildung von Homooligomeren, sondern auch die Bildung von Heterooligomeren. Da die SARAH-Domäne über die Eigenschaften eines Coiled Coils mit einem (ungewöhnlichen) Heptadrepeat verfügt, ist es möglich, dass sie nicht nur eine Dimerisierungssdomäne darstellt, sondern auch die Bildung von höheren Oligomeren erlaubt. Die SARAH-Domänen von u. a. NORE und MST1 verfügen nämlich an den Positionen g und e über geladene Aminosäurereste, was häufig in höher oligomeren Coiled Coils der Fall ist (Abb 4).

Um die Komplexzusammensetzung der MST1- und NORE1-Homooligomere und des MST1-NORE-Heterooligomers zu bestimmen, wurde eine analytische Gelfiltrationssäule (Sepharose® 75, 10/30 der Firma GE) kalibriert. Zur Kalibrierung wurde jeweils eine Proteinlösung von 100 µM mit einem Volumen von 20 µL auf die Säule appliziert und die Messung zwei Mal wiederholt. Alle Messungen wurden in einem Puffer mit 50 mM Tris·HCl...
67

pH 7.4 mit 5 mM MgCl₂, 5 mM DTE und 200 mM NaCl durchgeführt. Die bei den einzelnen Messungen erhaltenen V_e wurden gemittelt, durch V_0 dividiert (Tabelle 3) und gegen den dekadischen Logarithmus der Molekülmasse aufgetragen (Abb.18).

<table>
<thead>
<tr>
<th>Protein</th>
<th>m/Da</th>
<th>log M</th>
<th>Ve/mL</th>
<th>Ve/Vo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluedextran</td>
<td>2000000</td>
<td>7,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hGBP1</td>
<td>69301</td>
<td>4,84</td>
<td>9,03</td>
<td>1,20</td>
</tr>
<tr>
<td>BSA</td>
<td>66317</td>
<td>4,82</td>
<td>9,19</td>
<td>1,23</td>
</tr>
<tr>
<td>GST</td>
<td>52332</td>
<td>4,72</td>
<td>10,11</td>
<td>1,35</td>
</tr>
<tr>
<td>NORE1-95-358</td>
<td>29888</td>
<td>4,48</td>
<td>10,33</td>
<td>1,38</td>
</tr>
<tr>
<td>H-RAS-1-166</td>
<td>18852</td>
<td>4,28</td>
<td>12,21</td>
<td>1,63</td>
</tr>
<tr>
<td>NORE1-RBD</td>
<td>18567</td>
<td>4,27</td>
<td>11,90</td>
<td>1,59</td>
</tr>
<tr>
<td>RNaseA-1</td>
<td>13690</td>
<td>4,14</td>
<td>13,04</td>
<td>1,74</td>
</tr>
<tr>
<td>RAF-RBD</td>
<td>9205</td>
<td>3,96</td>
<td>14,01</td>
<td>1,87</td>
</tr>
<tr>
<td>Ubiquitin</td>
<td>8565</td>
<td>3,93</td>
<td>13,67</td>
<td>1,82</td>
</tr>
</tbody>
</table>

Tabelle 3: Kalibrierung der S 75 10/30 Gelfiltrationssäule. In der ersten Spalte befinden sich die für die Kalibrierung verwendeten Proteine (und Bluedextran zur Ermittlung von V_0) und in der zweiten Spalte deren molekularen Massen in Da. Alle Proteine wurden jeweils 3 Mal auf die Säule appliziert, die gemittelten V_e (vierte Spalte) durch V_0 dividiert (fünfte Spalte), gegen den dekadischen Logarithmus der Molekülmasse (Spalte 2) aufgetragen und durch eine lineare Funktion angenähert. Alle Messungen wurden in 50 mM Tris-HCl, 5 mM MgCl₂, 5 mM DTE und 200 mM NaCl als Puffer bei pH 7,4 durchgeführt, wobei jeweils 20 µL 100 µM Protein aufgetragen wurden.
Nach der Kalibrierung der analytischen Gelfiltrationssäule wurden 20 µL 100 µM NORE1-199-413, MST1-330-487 und eine äquimolare NORE1/MST1-Lösung jeweils drei Mal auf die Säule appliziert (Abb. 19).
Abbildung 19: Analytische Gelfiltration mit einer Superdex 75 10/30 Gelfiltrationssäule von NORE1-199-413, MST1-330-487 und einer äquimolaren NORE1/MST1-Lösung. Dargestellt ist die normalisierte Absorption bei 280 nm gegen Ve/Vo. Es wurde jeweils 20 µL 100 µM Protein in 50 mM Tris-HCl (pH 7,4), 5 mM MgCl₂, 5 mM DTE und 200 mM NaCl als Puffer auf die analytische S75 10/30 Gelfiltrationssäule aufgetragen. Die Messungen wurden jeweils mindestens zwei Mal wiederholt. Dargestellt sind der Übersichtlichkeit halber jedoch nur Einzelmessungen. Über den einzelnen Kurven befinden sich die über die Eichgerade ermittelten Massen für die jeweiligen Proteine. Für NORE (schwarze Quadrate) ergab sich eine Masse von 50 kDa, für MST1(rote Kreise) 76 kDa und für die NORE1/MST1-Lösung (grüne Dreiecke) 63 kDa.

In der Tabelle 4 sind die Ergebnisse der analytischen Gelfiltrationen nochmal gesondert aufgeführt.
Tabelle 4: Zusammenfassung der Ergebnisse der analytischen Gelfiltration mit der S 75 10/30 Gelfiltrationssäule. Dargestellt sind die Ergebnisse der jeweils drei Ve/Vo-Werte (dritte Spalte), die durch die Eichgerade (vierte Spalte) (siehe Abb.18) ermittelten Massen in Da und deren Durchschnittswerte (letzte Spalte).

<table>
<thead>
<tr>
<th></th>
<th>Messung</th>
<th>Ve/Vo</th>
<th>M/Da</th>
<th>m(Ø)/Da</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORE1-199-413</td>
<td>1</td>
<td>1,309</td>
<td>48860</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,300</td>
<td>50245</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,304</td>
<td>49543</td>
<td>49549</td>
</tr>
<tr>
<td>MST1-330-487</td>
<td>1</td>
<td>1,168</td>
<td>76062</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,169</td>
<td>75854</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,169</td>
<td>75854</td>
<td>75923</td>
</tr>
<tr>
<td>NORE1+MST1</td>
<td>1</td>
<td>1,227</td>
<td>63219</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,229</td>
<td>62874</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,226</td>
<td>63352</td>
<td>63148</td>
</tr>
</tbody>
</table>

Die Masse des NORE1-MST1-Heterooligomers beträgt gemäß den Ergebnissen analytischer Gelfiltrationsexperimente 63148 Da und entspricht einem Heterotrimer, bestehend entweder aus zwei MST1- und einer NORE1-Untereinheit (62485 Da) oder einer MST1- und zwei NORE1-Untereinheiten (68723); die Zusammensetzung ist somit nicht eindeutig. Bei dem NORE-MST1-Heterokomplex handelt es sich, den Experimenten aus den Abschnitten 4.10-4.11 zu urteilen, um ein Heterodimer, was auf das außergewöhnlich große Volumen der autoinhibitorischen Domäne von MST1 zurückzuführen ist (Abschnitt 4.5).

Die Komplexzusammensetzung von Proteinen kann auch mithilfe von Vernetzern (Crosslinkern) untersucht werden, die bestimmte Aminosäuren miteinander kovalent verknüpfen. Die so vernetzten Proteine können mithilfe der SDS-PAGE sichtbar gemacht werden, um deren Größe bestimmen zu können.
4.2 Vernetzung von NORE1- und MST1-Homoooligomeren und NORE-MST1-Heterooligomeren mithilfe von EDC

Alle Vernetzungsexperimente wurden auf Eis in 25 mM MES (pH 5) und 200 mM NaCl durchgeführt und die Proteinkonzentration betrug 100 µM. Die EDC-Konzentration betrug zu Beginn 1 mM und wurde nach 10 Min. auf 2, nach 25 Min. auf 3 und nach 55 Min. auf 4 mM erhöht. Es wurden vor der Zugabe von EDC Proben entnommen und nach der Zugabe wurden nach 5, 10, 15, 20, 30, 40, 60 und 80 Min. Proben entnommen und die Reaktion mit dem SDS-Probenpuffer, der 10 mM β-Merkaptoethanol enthielt, gestoppt. Die entnommenen Proben wurden einer SDS-PAGE unterzogen (Abb. 20). Für die Vernetzungsexperimente zur Bestimmung der Komplexzusammensetzung des NORE1-MST1-Heterokomplexes wurde das kürzere MST1-362-487-Konstrukt (15,36 kDa) verwendet. Das ist notwendig, da MST1-330-487 zwar eine Masse von 18,749 kDa aufweist, aber bei der SDS-PAGE etwa auf der gleichen Höhe läuft wie NORE1-199-413. Dies macht eine Unterscheidung dieser Konstrukte auf Acrylamidgelen sehr schwierig.

Aus den oben genannten Gründen wurden die Vernetzungsexperimente zusätzlich auch mit Hilfe von DSG durchgeführt.

4.3 Vernetzung von NORE1- und MST1-Homooligomeren und NORE1-MST1-Heterooligomenen mithilfe von DSG

Die Vorgehensweise bei der Vernetzung der NORE1- und MST1-Konstrukte mit DSG war ähnlich wie bei der Vernetzung derselben Konstrukte mit Hilfe von EDC. Im Folgenden werden deshalb nur die Unterschiede angegeben. Zu Beginn der Reaktion betrug die DSG-Konzentration 250 µM und wurde nach 20 Min. auf 750 und nach 40 Min. auf 1000 µM erhöht. Als Puffer wurde 50 mM HEPES (pH 7) mit 200 mM NaCl verwendet. Die Reaktion wurde mit Glycin (10 mM) gestoppt. Nach der Zugabe von DSG wurden in bestimmten Zeitabständen Proben entnommen und mittels SDS-PAGE analysiert (Abb. 21).

Die Ergebnisse der Vernetzungsexperimente mit DSG stimmen mit den Ergebnissen der Vernetzungsexperimente mit EDC überein. Für die beiden MST1-Konstrukte und für das
NORE1-Konstrukt ist nämlich eine Dimerisierung zu beobachten (Abb. 21A, B und C). Die Vernetzung des NORE1-MST1-Heterodimers mit Hilfe von DSG ist offenbar nicht so effizient wie mit EDC. Das NORE1-MST1-Heterodimer ist nur transient sichtbar; nach 60 Min. ist das Heterodimer kaum noch sichtbar.

Die Diskrepanzen zwischen den analytischen Gelfiltrationen und den Vernetzungsexperimenten könnten deswegen eher darin begründet sein, dass MST1 ein Homodimer bildet, dieses Homodimer aber bei der Gelfiltration die Größe (bzw. das hydrodynamische Volumen) eines Homotetramers aufweist. Die anomale Größe des MST1-330-487-Homodimers könnte darauf zurückzuführen sein, das dieses Konstrukt entweder eine von einer sphärischen Form stark abweichende Struktur aufweist oder teilweise unstrukturiert

Um die Frage zu beantworten, ob es sich bei der autoinhibitorischen Domäne von MST1 um eine unstrukturierte Proteindomäne handelt, wurde der der autoinhibitorischen Domäne entsprechende DNA-Abschnitt von MST1 kloniert. Nach Expression des rekombinanten Proteins (GST-MST1-330-431) in dem Expressionsstamm BL21 (DE3) wurde die autoinhibitorische Domäne über GSH-Affinitätschromatographie und Gelfiltration gereinigt.

4.4 Analytische Gelfiltration für die autoinhibitorische Domäne von MST1

Abbildung 22: Analytische Gelfiltration mit einer Superdex 75 16/60 Gelfiltrationssäule für die autoinhibitorische Domäne von MST1 (MST1-330-431). Dargestellt ist die normalisierte Absorption bei 280 nm gegen \(V_e/V_0 \). Die Gelfiltration wurde in 50 mM Tris-HCl (pH 7,4) und 200 mM NaCl durchgeführt. Bei dem Peak um \(V_e/V_0 = 1 \) handelt es sich um Verunreinigungen, die mit dem Ausschlussvolumen von der Säule eluieren.

Der Eichgerade der Gelfiltrationssäule zufolge hat die autoinhibitorische Domäne eine Größe von 31,7 kDa (Abb. 22), obwohl die aufgrund der Aminosäuresequenz berechnete Masse der autoinhibitorischen Domäne nur 11,84 kDa ist. Die Fraktionen, die dem zweiten Peak in der Abb. 22 entsprechen, wurden mittels SDS-PAGE analysiert (Abb. 23).
Abbildung 23: SDS-PAGE für die Fraktionen 31-35 der analytischen Gelfiltration von MST1-330-431. Die Fraktionen 31-35 enthalten neben der autoinhibitorischen Domäne von MST1 auch Verunreinigungen bei etwa 30 kDa (A). Dabei handelt es sich um die Protease TEV (30 kDa) zur Hydrolyse des GST-Tags. Da die TEV Protease einen His-Tag trägt, konnte sie mithilfe einer His-Trap®-Säule entfernt werden (B).

Man kann der Abb. 23A entnehmen, dass die autoinhibitorische Domäne in sehr reiner Form vorliegt (abgesehen von Verunreinigungen durch die TEV-Protease, die durch eine His-Trap®-Säule entfernt werden konnten, Abb. 23B). Die Ergebnisse der analytischen Gelfiltrationen deuten darauf hin, dass die autoinhibitorische Domäne von MST1 ein außergewöhnlich großes Volumen besitzt, denn obwohl es eine Masse von nur 11,84 kDa aufweist, eluiert es wie ein Protein mit einer Masse von 31,7 kDa.

4.5 Untersuchung der hydrodynamischen Radien von MST1-330-487 und MST1-330-431 mittels DLS

Die Messungen ergaben einen R_H von 4,52 nm für MST1-330-487, 3,08 für MST1-330-431 und 2,09 für H-RAS-1-166. Obwohl die autoinhibitorische Domäne von MST1 eine Masse von nur 11,841 kDa hat, hat sie einen größeren R_H (3,08 nm) als H-RAS-1-166 (2,09) mit einer Masse von 18,853 kDa (Abb. 24A). Die außergewöhnliche Größe der autoinhibitorischen Domäne wird deutlicher, wenn deren hydrodynamisches Volumen ($12,24 \times 10^{-20}$ cm3) mit dem von RAS ($3,82 \times 10^{-20}$ cm3) verglichen wird. (Abb. 24B). Es ist fast um den Faktor drei größer.

Das außergewöhnlich große hydrodynamische Volumen der autoinhibitorischen Domäne kann nur erklärt werden, wenn angenommen wird, dass die autoinhibitorische Domäne entweder di- oder trimerisiert oder nicht gefaltet ist und somit Eigenschaften eines Randomcoils aufweist.

31,7 kDa (siehe Abb. 22) von MST1. Die Masse der Dimer-Modelle beträgt somit 70,996 kDa und ist um sechs Prozent kleiner als die durch die Gelfiltration bestimmte Größe von MST1-330-487 von 75,923 kDa. (siehe Abb. 19).

Von MST1-330-487 wurden zwei Modelle generiert, da die Orientierung der autoinhibitorische Domänen zu der SARAH-Domäne nicht bekannt ist. Vorstellbar sind zwei Extreme. Bei dem ersten Extrem befinden sich die autoinhibitorischen Domänen in räumlicher Nähe, wodurch eine sehr kompakte Struktur entsteht (Abb. 25C) und bei dem zweiten Modell befinden sich die autoinhibitorischen Domänen möglichst weit voneinander

von 2,5 nm, obwohl die Carboanhydrase eine fast dreimal größere Masse besitzt als die autoinhibitorische Domäne.

Die Ergebnisse der DLS-Messungen legen nahe, dass die autoinhibitorische Domäne von MST1 einen außergewöhnlich großen hydrodynamischen Radius besitzt. Das würde folglich bedeuten, dass die autoinhibitorische Domäne Randomcoil-Eigenschaften besitzt, es sei denn, die autoinhibitorische Domäne ist in der Lage Homodimere oder sogar Homotrimere zu bilden. Ob dies tatsächlich der Fall ist, wurde durch Vernetzungsexperimente mithilfe von EDC und DSG untersucht.

4.6 Vernetzung der autoinhibitorischen Domäne von MST1 mithilfe von EDC und DSG

Abbildung 27: SDS-PAGE für Vernetzungsexperimente von MST1-330-431 (autoinhibitorische Domäne) mit EDC und DSG. Die Experimente mit EDC wurden in 25 mM MES (pH 5) und 200 mM NaCl und die Experimente mit DSG wurden in 50 mM HEPES (pH 7) mit 200 mM NaCl durchgeführt. Die Proteinkonzentration betrug bei allen Experimenten 100 µM und alle Experimente wurden auf Eis durchgeführt. Vor der Zugabe von DSG bzw. EDC wurde jeweils eine Probe als Referenz entnommen. Die Konzentration von EDC betrug zu Beginn des Experiments 1,5 mM und wurde nach 15 Min. auf 3, nach 30 Min. auf 4,5 und nach 60 Min. auf 6 mM erhöht (mit Pfeilen angedeutet) (A). Die Konzentration von DSG betrug zu Beginn 0,5 mM und wurde nach 15 Min. auf 1, nach 30 Min. auf 1,5 und nach 60 Min. auf 2 mM erhöht (B). Nach der Zugabe von EDC bzw. DSG wurden nach 5, 10, 15, 20, 30, 40, 60 und 80 Min. Proben entnommen und mit SDS-Probenpuffer gemischt. Der Probenpuffer enthielt 10 mM β-Merkaptoethanol als Quencher für EDC und 10 mM Glycin für DSG. Für die SDS-PAGE wurden Gele mit 15% Acrylamid verwendet.

Wie der Abb. 27 entnommen werden kann, konnte weder mithilfe von EDC noch mit DSG nachgewiesen werden, dass die autoinhibitorische Domäne dimerisiert oder trimerisiert. Im Unterschied zu den Vernetzungsexperimenten mit den Konstrukten MST1-330-487 und NORE-199-413 findet augenscheinlich kaum unspezifische Vernetzung statt, die am oberen Ende des Trenngels sichtbar wäre, stattdessen nimmt die Bandenstärke kontinuierlich ab, wobei nach 60 Min. auf dem Gel kaum noch Protein zu beobachten ist. Ungewöhnlich bei der Vernetzung der autoinhibitorischen Domäne ist das Auftreten einer Bande nach etwa 20 Min. unterhalb der nichtvernetzten Bande (Abb. 27A). Ursächlich dafür ist wahrscheinlich intramolekulare Vernetzung, die dazuführt, dass die autoinhibitorische Domäne durch SDS nicht vollständig entfaltet werden kann und deswegen kompakter wird und das Gel zusammen mit der Lauffront verlässt.
4.7 Untersuchung des Faltungszustands der autoinhibitorischen Domäne von MST1 mittels DSC

Die Ergebnisse der DLS-Messungen und analytischen Gelfiltrationen legen nahe, dass die autoinhibitorische Domäne von MST1 einen außergewöhnlich großen R_H besitzt. Da die autoinhibitorische Domäne offensichtlich nicht oligomerisiert, muss sie unstrukturiert bzw. nicht gefaltet sein. Das würde bedeuten, dass sie eine sehr kleine Faltungsenthalpie (im Vergleich zu einem gefalteten Protein mit der gleichen Masse) aufweist. Die Faltungsenthalpie ist ein Maß für Ordnung in Proteinen. Gefaltete Proteine besitzen eine höhere Faltungsenthalpie (ΔH_{Falt}) als Proteine, die zwar die gleiche Masse besitzen, aber unstrukturiert sind.

Die ΔH_Falt der autoinhibitorischen Domäne ist mit -8 kcal/mol sehr niedrig und entspricht etwa einem Viertel der ΔH_Falt für die SARAH-Domäne (-34 kcal/mol) (Abb. 28). Die autoinhibitorische Domäne hat eine Schmelztemperatur (T_M) von nur 42 °C und ist 20 °C niedriger als die T_M der SARAH-Domäne. Die Wiederholung der Scans für die autoinhibitorische und die SARAH-Domäne zeigt, dass die Entfaltung der autoinhibitorischen Domäne im Gegensatz zur Entfaltung der SARAH-Domäne irreversibel verläuft (Abb. 28). Die beim zweiten Scan gemessene Faltungsenthalpie der SARAH-Domäne ist fast genauso hoch wie beim ersten Scan. Die Wärmekapazität des aus der autoinhibitorischen und der SARAH-Domäne bestehenden Konstrukts weist zwei Übergänge auf. Der erste Übergang kann der autoinhibitorischen Domäne und der zweite der SARAH-Domäne zugewiesen
werden. Die T_M des ersten Übergangs beträgt etwa 42 °C die des zweiten 68 °C und ist 6 °C höher als diejenige der SARAH-Domäne.

4.8 Temperatursensivität der autoinhibitorischen Domäne

Es wurde die thermische Stabilität (in Bezug auf die Löslichkeit) der autoinhibitorischen Domäne von MST1 überprüft. Dazu wurden die optischen Dichten (ODs) von Lösungen (jeweils 100 µg/ml) von der autoinhibitorischen Domäne, RAS-1-166, Ovalbumin, Lysozym und NORE-C1-RBD bei Raumtemperatur bei 350 nm bestimmt. Anschließend wurden die Proteinklösungen für 1 Min. auf 95 °C erhitzt, die Lösung auf einem Eisbad für fünf Min. gekühlt und die ODs erneut bestimmt (Abb. 29).
Abbildung 29: Temperatursensitivität der autoinhibitorischen Domäne. Neben der autoinhibitorischen Domäne wurden auch die OD’s von H-RAS-1-166, Ovalbumin, Lysozym und NORE1-95-358 (C1-RBD) bestimmt. Alle Messungen wurden jeweils mit 100 µg/ml Protein bei 350 nm in 50 mM TrisHCl (pH 7,4) (mit 5 mM MgCl₂, 200 mM NaCl und 5 mM DTE) bei RT und nach einer 10 minütigen Hitzedenaturierung bei 95 °C durchgeführt.

Wie der Abb. 29 entnommen werden kann, besitzt die autoinhibitorische Domäne im Gegensatz zu allen anderen vier Proteinen vor und nach der Erhitzung auf 95 °C eine sehr ähnliche OD bei 350 nm (0,0067 bie RT und 0,0148 nach Erhitzen auf 95 °C). Bei den anderen Proteinen ist eine Erhöhung der OD (0,49 für RAS, 0,28 für Ovalbumin, 1,51 für Lysozym und 0,29 NORE-C1-RBD) aufgrund der durch thermische Denaturierung bedingten Ausfällung und Trübung zu beobachten.
4.9 Untersuchung von Sekundärstrukturelementen der autoinhibitorischen Domäne von MST1 mittels Circular-Dichroismus

Da DSC nur in der Lage ist, Informationen über die Faltungsenthalpien von Proteinen, nicht aber über den Anteil von Sekundärstrukturelementen zu liefern, wurde die autoinhibitorische Domäne durch CD-Spektroskopie näher untersucht. Dazu wurden für die autoinhibitorische Domäne CD-Spektren bei 20, 30, 40, 50, 60 und 70 °C aufgenommen (Abb. 30).

Abbildung 30: Spektroskopische Untersuchung der autoinhibitorischen Domäne (MST1-330-431). Aufgetragen ist die molare Elliptizität (θ) gegen die Wellenlänge (λ). Die Messungen wurden mit 10 µM Protein in 10 mM KH$_2$PO$_4$ (pH 7,4) bei 20, 30, 40, 50, 60 und 70 °C durchgeführt. Die Abbildung enthält zum Vergleich zusätzlich auch das Spektrum von MST1-330-487 bei 20 °C, das sowohl die autoinhibitorische als auch die SARAH-Domäne enthält. Die Abb. enthält auch das Spektrum von reinem Puffer (10 mM KH$_2$PO$_4$). Es wurden jeweils 10 Scans gemittelt.

Der Verlauf des CD-Spektrums der autoinhibitorischen Domäne zeigt bei unterschiedlichen Temperaturen einen sehr ähnlichen Verlauf (Abb. 30). Wenn die autoinhibitorische Domäne

Offensichtlich enthält die autoinhibitorische Domäne keinerlei Sekundärstruktur-Elemente, die durch CD-Spektroskopie nachgewiesen werden könnten.

4.10 Densitometrische Untersuchung des NORE1-MST1-Heterokomplexes

Die Ergebnisse der Vernetzungsexperimente mithilfe von EDC und DSG deuten drauf hin, dass NORE1 und MST1 zusammen ein Heterodimer bilden (Abb. 20 und 21). Es kann jedoch nicht mit völliger Sicherheit ausgeschlossen werden, dass NORE1 und MST1 unspezifisch zu einem Heterodimer vernetzt wurden, zumal die Banden auf dem Gel für das Heterodimer relativ schwach sind. Durch densitometrische Untersuchung des NORE1-MST1-Heterokomplexes soll überprüft werden, ob es sich hierbei tatsächlich um ein Heterodimer handelt.

Bei der Densitometrie werden Proteinstandards mit bekannter Konzentration verwendet, um die Konzentration unbekannter Proben zu bestimmen. Die Densitometrie liefert folglich nur dann akkurate Ergebnisse, wenn die genauen Konzentrationen der Proteinstandards bekannt sind.

Bei der spektroskopischen Konzentrationsbestimmung von Proteinen bei 280 nm hängt die Genauigkeit der Messung von den Extinktionskoeffizienten der jeweiligen Proteine ab und die Höhe der Extinktionskoeffizienten wird wiederum im Wesentlichen von dem Anteil an Tryptophan- und Tyrosinresten bestimmt (Tabelle 5).

<table>
<thead>
<tr>
<th></th>
<th>BSA</th>
<th>MST1-330-487</th>
<th>NORE1-199-413</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginin</td>
<td>3,9</td>
<td>5,5</td>
<td>4,1</td>
</tr>
<tr>
<td>Summe Lysin und Histidin</td>
<td>13</td>
<td>8,5</td>
<td>12,7</td>
</tr>
<tr>
<td>Summe hydrophober Aminosäuren</td>
<td>24,4</td>
<td>24,4</td>
<td>28,6</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0,3</td>
<td>1,2</td>
<td>0,5</td>
</tr>
<tr>
<td>Tyrosin</td>
<td>3,4</td>
<td>1,8</td>
<td>3,2</td>
</tr>
<tr>
<td>Extinktionskoeffizient / M^{-1}cm^{-1}</td>
<td>42925</td>
<td>15470</td>
<td>15930</td>
</tr>
</tbody>
</table>

BSA und NORE-199-413 besitzen mit einem Anteil von 3,9 % bzw. 4,1 % einen fast identischen Anteil an Argininresten; dies gilt auch für den Anteil der Summe von Lysin- und Histidinresten (13 % für BSA bzw. 12,7% für NORE1). Mit 5,5 % hat MST1-330-487 einen leicht höheren Anteil an Argininresten aber mit 8,5 % einen etwas niedrigeren Anteil der Summe für Lysin- und Histidenresten. Mit 24,4 % haben BSA und MST1 einen identischen
Anteil an hydrophober Aminosäureresten; mit 28,6 % hat NORE1 einen leicht höheren Anteil.

Folglich können die Konzentrationen von NORE1 und MST1 mithilfe von BSA als Standard mit hinreichender Genauigkeit bestimmt werden.

Da NORE1-199-413 und MST1-330-487 mit 15930 und 15470 M⁻¹cm⁻¹ sehr ähnliche Extinktionskoeffizienten besitzen, lassen sich deren Konzentrationen UV-spektroskopisch bei 280 nm ebenfalls akkurat bestimmen. Die Konzentrationen von NORE1-199-413 und MST1-330-487 wurden durch den Bradford-Assay und UV-spektroskopisch bei 280 nm ermittelt (Tabelle 6).

<table>
<thead>
<tr>
<th>Methode</th>
<th>Bradford-Assay (c mg/ml)</th>
<th>280 nm (c mg/ml)</th>
<th>Abweichung (%/</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORE1-199-413</td>
<td>43,34</td>
<td>39,73</td>
<td>-9,1</td>
</tr>
<tr>
<td>MST1-330-487</td>
<td>65,25</td>
<td>57,35</td>
<td>-13,8</td>
</tr>
</tbody>
</table>

4.11 Isolierung des NORE1-MST1-Heterokomplexes

Zunächst wurde eine Lösung aus 0,25 mM GST-MST1-330-487 und 1 mM NORE1-199-413 auf eine kleine GSH-Säule (V = 6ml) aufgetragen, mit etwa 14 Säulenvolumina Puffer gewaschen (Abb. 31A) und für den Durchlauf eine SDS-PAGE durchgeführt (Abb. 31B). Der vierfache molare Überschuss von NORE1-199-413 über GST-MST1-330-487 wurde deswegen eingesetzt, um einen Komplex definieter Zusammensetzung zu erhalten.

Abbildung 31: Applikation einer Proteinlösung mit 0,25 mM GST-MST1-330-487 und 1 mM NORE1-199-413 auf eine GSH-Säule (A) und anschließende SDS-PAGE für den Durchlauf (B). Als Puffer wurde 50 mM Tris-HCl (pH 7,4) mit 200 mM NaCl und 5 mM DTT benutzt. Das Volumen der GSH-Säule betrug 6 ml und nach der Applikation der NORE1-MST1-Lösung (1 ml) wurde die Säule mit etwa 14 Säulenvolumina gewaschen, um nicht gebundenes NORE1 vollständig von der Säule zu entfernen. Anschließend wurde für die Fraktionen 4-7 (entsprechen dem Peak in A) eine SDS-PAGE mit 15 % Acrylamid durchgeführt. Wie zu erwarten befindet sich im Durchlauf ein geringe Menge an GST-MST1-330-487 (bei 45 kDa) und überschüssiges NORE1-199-413.
Der auf der GSH-Säule immobilisierte GST-MST1-NORE1-Heterokomplex wurde mit der TEV-Protease behandelt, um den NORE-MST1-Heterokomplex freizusetzen. Anschließend wurde das Protein konzentriert und einer Gelfiltration unterzogen (Abb. 32A), um die Größe des NORE1-MST1-Heterokomplexes zu bestimmen. Es wurde für den ersten und zweiten Peak eine SDS-PAGE durchgeführt (Abb. 32B).

Abbildung 32: Gelfiltration des über GSH-Affinitätschromatographie gereinigten NORE-MST1-Heterokomplexes (A) und anschließende SDS-PAGE für den ersten und zweiten Peak der Gelfiltration(B). Für die Gelfiltration wurde eine S75 16/60-Säule benutzt. Als Puffer diente 50 mM Tris-HCl (pH 7,4) mit 200 mM NaCl und 5 mM DTT. Der erste Peak in A enthält den MST1-NORE1-Heterokomplex und hat eine Größe von 66,05 kDa. Im zweiten Peak sind neben Verunreinigungen auch geringe Mengen an NORE1-199-413 und MST1-330-487 enthalten (B).

Wie der Abb. 32B entnommen werden kann, war die Freisetzung des NORE1-MST1-Heterokomplexes (mit einer Größe von 66,05 kDa) durch die Proteolyse von MST1-330-487 vom GST-Tag erfolgreich. Anschließend wurde der NORE1-MST1-Komplex densitometrisch untersucht.
4.12 Densitometrische Bestimmung der Zusammensetzung des NORE1-MST1-Heterokomplexes

Abbildung 33: Densitometrische Bestimmung der Zusammensetzung des NORE1-MST1-Heterokomplexes. Untersucht wurden die bei der Gelfiltration erhaltenen Fraktionen 50-53, die den NORE1-MST1-Heterokomplex enthielten. Bei der SDS-PAGE wurden zwei Sätze von Standards benutzt: für A wurden Bradford- und für D UV$_{280}$ nm-Standards verwendet. Die Konzentrationen der Standards betrugen jeweils 0,25, 0,5, 0,75 und 1 mg/ml. In B und E sind die densitometrisch bestimmten optischen Dichten (OD) gegen die jeweiligen Konzentrationen der Proteinstandards aufgetragen, um zu zeigen, dass die OD linear mit der Konzentration wächst. Mithilfe der Proteinstandards wurden dann die jeweiligen Konzentrationen von NORE1 und MST1 in dem Heterokomplex für die Fraktionen 50-53 bestimmt und die Konzentration von NORE1 durch die von MST1 dividiert (C und F)

4.13 Einfluss von RAS auf die NORE1-MST1-Heterodimerisierung

RAS bindet mit hoher Affinität (K$_D$ = 80 nM; Stieglitz et. al, 2008) an die RBD-Domäne von NORE1 und NORE1 seinerseits bildet mit MST1 ein Heterodimer. Dies wirft die Frage auf, ob RAS, NORE1 und MST1 in der Lage sind einen trimeren Komplex zu bilden, oder ob die Bindung von RAS und MST1 an NORE1 kompetitiver Natur ist.

Zunächst wurde eine Lösung, die jeweils 0,33 millimolar NORE1-199-413, H-RAS-1-166 und GST-MST1-330-431 enthielt, auf Eis für 15 Min. inkubiert, danach auf eine kleine GSH-Säule (V = 5 ml) aufgetragen und mit 4 Säulenvolumina Puffer gewaschen (Abb. 34A). Anschließend wurde GST-MST1 mit 20 mM GSH von der Säule eluiert (Abb.34B). Die bei der Auftragung der proteinhaltigen Lösung und der Elution mit GSH erhaltenen Fraktionen, wurden mittels SDS-PAGE analysiert (Abb. 34C und D).
Abbildung 34: Durchfluss einer Lösung, die jeweils 0,33 mM NORE1-199-413, GST-MST1-330-487 und H-RAS-1-166 enthielt, von einer GSH-Säule (A), und die Elution von GST-MST1 von der Säule mit 20 mM GSH (B). Die beim Durchfluss der Proteinlösung und der Elution erhaltenen Fraktionen wurden mittels SDS-PAGE analysiert (C und D). Als Puffer diente 50 mM Tris-HCl (pH 7,4) mit 5 mM MgCl₂, 200 mM NaCl und 5 mM DTT. Auf das Gel wurden zusätzlich auch Proteinstandards aufgetragen.

Wie der Abb. 34C entnommen werden kann, enthalten die Fraktionen 9-16 fast ausschließlich NORE1 und RAS. Nach der Elution enthalten die Fraktionen 8-15 GST-MST1 und eine geringe Menge NORE1, jedoch kein RAS (Abb.34D). Offensichtlich ist (GST-)MST1 nicht in der Lage zusammen mit NORE1 und RAS einen heterooligomeren Komplex zu bilden. Vielmehr scheint RAS MST1 von NORE1 zu verdrängen; denn ansonsten würde ein größerer Anteil von NORE1 von GST-MST1 an der GSH-Säule zurückgehalten und würde die Säule nicht zusammen mit RAS verlassen.
Um sicherzustellen, dass sowohl NORE1 als auch RAS vollständig in aktiver Form vorliegen, wurde der NORE1-RAS-Heterokomplex mittels Gelfiltration isoliert. Es ist nämlich vorstellbar, dass ein Teil der RAS-Moleküle während der Reinigungsprozedur und des Nukleotidaustausches teilweise beschädigt wurde und nicht mehr aktiv ist. Der NORE1-RAS-Heterokomplex wurde erhalten, in dem NORE1 mit einem vierfachen molaren Überschuss an RAS vermisch und auf eine Gelfiltrationssäule aufgetragen wurde (Abb. 35A). Alle Fraktionen, die Protein enthielten, wurden mittels SDS-PAGE analysiert (Abb. 35B).

Abbildung 35: Gelfiltration mit einer Superdex 16/60 Gelfiltrationssäule für den NORE1-RAS-Heterokomplex (A) und anschließende Analyse der Peaks 1 and 2 mittels SDS-PAGE (B). Als Puffer diente 50 mM Tris-HCl (pH 7,4) mit 5 mM MgCl₂, 200 mM NaCl und 5 mM DTT. Es wurden 100 µL einer Lösung mit 0,25 mM NORE1-199-413 (24,978) und 1 mM H-RAS-1-166-GppNHp (18,85 kDa) auf die Gelfiltrationssäule aufgetragen (A). Anschließend wurden die Fraktionen 50-53 und 74-82, die den Peaks 1 und 2 entsprechen, mittels SDS-PAGE untersucht (B). Hierbei wurde ein Gel mit 15 % Acrylamid verwendet. In den Fraktionen, die dem Peak 1 entsprechen, ist der NORE1-RAS-Heterokomplex vorhanden, der entsprechend der Eichgerade eine Masse von 70,5 kDa aufweist. In den Fraktionen, die dem Peak 2 entsprechen, ist nur überschüssiges RAS enthalten.

Die préparative Gelfiltration mit einem Überschuss von RAS über NORE1 wurde mehrmals wiederholt, um eine genügende Menge des NORE1-RAS-Heterokomplexes für weitere Analysen zu erhalten. Anschließend wurde auf eine kleine GSH-Säule 100 µL einer 1-millimolaren GST-MST1-Lösung zusammen mit 100 µL einer 1-milimolaren Lösung des bei der Gelfiltration erhaltenen NORE1-RAS-Heterokomplexes (nach einer Inkubation von 15
Min.) aufgetragen (bei der Berechnung der Konzentration des NORE1-RAS-Heterokomplexes wurde angenommen, dass NORE1 und RAS ein Heterodimer bilden), mit 4 Säulenvolumina Puffer gewaschen und mit 20 mM GSH eluiert (Abb. 36A). Die Fraktionen 28-35 und 69-75, die dem Peak 1 und 2 in der Abb. 18 A entsprechen, wurden mittels SDS-PAGE untersucht (Abb.36B und C).

Abbildung 36: Auftragung des NORE1-RAS-Heterokomplexes zusammen mit GST-MST1-330-487 auf eine GSH-Säule, Als Puffer wurde 50 mM Tris-HCl (pH 7,4) mit 5 mM MgCl₂, 200 mM NaCl und 5 mM DTT benutzt. Die Konzentrationen von GST-MST1 und des NORE1-RAS-Heterokomplexes betrugen 50 µM. Nachdem Auftragen der Proteinlösung (Fraktionen 28-35) wurde die Säule mit 4 Säulenvolumina Puffer gewaschen und mit 20 mM GSH eluiert (Fraktionen 69-75). Die Fraktionen 28-35 und 69-75 wurden mittels SDS-PAGE untersucht (B und C). Auf das Gel wurden zusätzlich auch Proteinstandards für NORE1, RAS und GST-MST1 aufgetragen.

In den Fraktionen 28-35 ist ausschließlich NORE1 und RAS enthalten (Abb. 36B). Nach der Elution mit GSH enthalten die entsprechenden Fraktionen ausschließlich GST-MST1, jedoch weder NORE1 noch RAS (Abb. 36C), was darauf hindeutet, dass NORE1, RAS und (GST-)MST1 nicht in der Lage sind einen heterooligomeren Komplex zu bilden. Das bestätigt außerdem die beim vorherigen Experiment gemachte Beobachtung, dass (GST-)MST1 nicht in der Lage ist, RAS von NORE1 zu verdrängen.
4.14 Kristallisation der SARAH-Domäne von NORE1

Das Ziel bei der Kristallisation der SARAH-Domäne von NORE1 war die Verbesserung der Auflösung, da die Struktur dieser Proteindomäne bereits von Daniel Schwarz mit einer Auflösung von 1,9 Å gelöst werden konnte (Promotionsarbeit von Daniel Schwarz 2002).

In initial Screens für die SARAH-Domäne von NORE1 wuchsen unter zwei Bedingungen bei 18 °C über Nacht Kristalle: erste Bedingung; 0,085 M HEPES (Natriumsalz, pH 7,5), 8,5 % (v/v) Isopropanol, 17 % (w/v) PEG 4000 und 15 % (v/v) Glycerol (Abb. 37A) und zweite Bedingung; 0,1 M CdCl₂, 0,1 M Natriumacetat (pH 4,6) und 30 % PEG 400 (v/v) (Abb. 38A). Hierbei betrug die Konzentration von NORE1-SARAH 1,6 mM (in 20 mM TrisHCl pH 7,4).

Die erste Kristallisationsbedingung wurde optimiert, indem die PEG-Konzentration zwischen 11 und 25 % variert wurde. Dabei stellte sich heraus, dass die größten Kristalle in Anwesenheit von 11 % PEG 4000 wuchsen (Abb. 37B); die Größe der Kristalle nahm mit zunehmender PEG-Konzentration ab.

Abbildung 37: Erste Kristallisationsbedingung von NORE1-SARAH (Δ370-413). In initial Screens für NORE1-SARAH wuchsen bei der Bedingung 0,085 M HEPES (Natriumsalz, pH 7,5), 8,5 % (v/v) Isopropanol, 17 % (w/v) PEG 4000, 15 % (v/v) Glycerol und 1,6 mM NORE1-SARAH über Nacht bei 18 °C Kristalle (A). Die Optimierung dieser Bedingung lieferte die größten Kristalle bei der Bedingung mit 11 % PEG 4000 (B).

Die Auflösung der Reflexe der gebeugten Röntgenstrahlung war für diese Kristalle jedoch sehr schlecht (5-6 Å) und konnte leider nicht weiter optimiert werden. Parallel dazu wurden
auch Bedingungen getestet, bei denen die PEG-Konzentration ebenfalls zwischen 11 und 25 % variiert wurde, aber auf Glycerol verzichtet wurde. Die Bedingungen ohne Glycerol lieferten jedoch sehr kleine Kristalle und konnten nicht weiter optimiert werden. Daher wurde die zweite Kristallisationsbedingung ebenfalls optimiert, indem die PEG-400- (18-30 % w/v) und CdCl₂-Konzentrationen (50-100 mM) variiert wurden, wobei in der Bedingung mit 18 % PEG 400 und 50 mM CdCl₂ die größten Kristalle wuchsen (Abb. 38B). Von diesen Kristallen konnte ein Datensatz über die Elektronendichteverteilung mit einer Auflösung von bis zu 3 Å generiert werden.

Abbildung 38: Zweite Kristallisationsbedingung von NORE1-SARAH (Δ370-413). Unter der Bedingung 0,1 M CdCl₂, 0,1 M Natriumacetat (pH 4,6), 30 % PEG 400 (v/v) und 1,6 mM NORE1-SARAH wuchsen bei 18 °C über Nacht Kristalle (A). Die Optimierung dieser Bedingung lieferte die größten Kristalle bei der Bedingung mit 18 % PEG 400 und 50 mM CdCl₂(B).

Bei einer konstanten PEG-Konzentration von 18 % hing die Anzahl und die Größe der Kristalle von der CdCl₂-Konzentration ab; die Kristallisation setzte erst bei 50 mM CdCl₂ ein und mit steigender CdCl₂-Konzentration nahm die Anzahl der Kristalle zwar zu, deren Größe jedoch ab.

Die Kristallisationsbedingungen konnten leider nicht weiter verbessert werden, um eine bessere Auflösung als 1,9 Å zu erreichen.
4.15 Kristallisation der SARAH-Domäne von MST1

Bei den Initial Screens für die SARAH-Domäne von MST1 wuchsen bei 18 °C nach etwa vier Wochen bei der Bedingung mit 1,7 M Ammoniumsulfat, 4,25 % (v/v) Isopropanol und 15 % (v/v) Glycerol Kristalle (Abb. 39A). Hierbei betrug die Konzentration von MST1-SARAH 1,6 mM (in 20 mM TrisHCl pH 7,4). Diese Kristallisationsbedingung wurde optimiert, indem die Ammoniumsulfat-Konzentration zwischen 1,1 und 3,1 M variiert wurde, wobei Kristalle bei Ammoniumsulfat-Konzentrationen von 1,8-2 M wuchsen (Abb. 39B). Diese Kristalle wurden benutzt, um einen Datensatz über die Elektronendichteverteilung mit einer Auflösung bis zu 3,1 Å zu generieren.

Abbildung 39: Kristallisation von MST1-SARAH (437-487). Die SARAH-Domäne von MST1 lieferte bei 18 °C nach etwa vier Wochen bei der Bedingung mit 1,7 M Ammoniumsulfat, 4,25 % (v/v) Isopropanol, 15 % (v/v) Glycerol und 1,6 mM MST1-SARAH Kristalle (A). Bei der Optimierung dieser Bedingung stellte sich heraus, dass die größten Kristalle bei Ammoniumsulfat-Konzentrationen von 1,8-2 M wuchsen. In B ist exemplarisch ein bei der Bedingung mit 1,8 M Ammoniumsulfat gewachsenen Kristall gezeigt.

Während der Entstehung dieser Arbeit konnte die Struktur der SARAH-Domäne von MST1 durch NMR-Spektroskopie aufgeklärt werden (Hwang et al., PNAS 2007). Die Auflösung der Elektronendichteverteilung für die Kristalle der SARAH-Domäne von MST1 konnte leider nicht weiter optimiert werden, um mehr Details (als in der NMR-Struktur enthalten sind) über die Struktur der SARAH-Domäne zu erhalten. Eine Auflösung von bis zu 3,1 Å erlaubt leider nur Einblicke in die Tertiärstruktur von Proteinen, liefert jedoch keine detaillierten Informationen über die genaue Anordnung der beteiligten Aminosäuren.
Ein weiteres Ziel dieser Arbeit war die Ermittlung von Bedingungen, unter denen der NORE1-MST1-Heterokomplex kristallisiert. Dies war nicht möglich, da MST1 und NORE1 offensichtlich keinen hochaffinen stabilen Heterokomplex bilden. Statt dessen existieren vermutlich drei Gleichgewichte (eine Gleichgewichte zwischen MST1-Dimeren und ein zweites Gleichgewicht zwischen NORE1-Dimeren und ein drittes Gleichgewicht zwischen NORE1-MST1-Heterodimeren), wobei das Gleichgewicht nur teilweise auf der Seite des Heterokomplexes liegt. Für eine erfolgreiche Kristallisation muss das Gleichgewicht jedoch fast vollständig auf der Seite des Heterokomplexes liegen, was offensichtlich nicht der Fall ist, denn NORE1-SARAH und MST1-SARAH kristallisieren in Gegenwart jeweils des anderen Proteins.
5 Diskussion

5.1 Komplexzusammensetzung von NORE1 und MST1

Die Ergebnisse der Vernetzungsexperimente mit EDC und DSG und die densitometrische Untersuchung des NORE1-MST1-Heterokomplexes weisen darauf hin (siehe Abb. x), dass die SARAH-Domänen von MST1 und NORE1 nur die Bildung von Homo- und Heterodimeren ermöglichen, nicht aber die Bildung höherer Oligomere. Das bedeutet, dass die partielle Besetzung der Positionen e und g mit hydrophoben Aminosäureresten im Heptadrepeat keinen Einfluss auf die Anzahl der Komplexuntereinheiten von MST1- und NORE1-Homo- und Heterooligomeren hat.

Im Verlauf dieses Projektes wurde von Hwang et al. durch NMR-Spektroskopie die Struktur der SARAH-Domäne von MST1 gelöst (Hwang et al., PNAS 2007). Dabei zeigte sich, dass es sich bei der SARAH-Domäne von MST1 um ein (antiparalleles) Homodimer handelt (Abb. 40). Dieses Ergebnis von Hwang et al. bestätigt die bei dieser Arbeit gemachte Beobachtung, dass die SARAH-Domäne von MST1 die Bildung von Homodimen auch in dem Konstrukt, das neben der SARAH-Domäne auch die autoinhibitorische Domäne enthält, vermittelt.

Das Dimerinterface wird hauptsächlich durch hydrophobe (siehe Abb. 40), aber auch durch elektrostatische (Asp-452 mit Arg-470) Wechselwirkungen stabilisiert.

Angesichts der Tatsache, dass die SARAH-Domäne von MST2 eine hohe Sequenzidentität und Sequenzhomologie zu der SARAH-Domäne von MST1 aufweist und bis auf eine Ausnahme alle Aminosäuren von MST1, die die Dimerisierung vermitteln, bei MST2 konserviert sind, kann davon ausgegangen werden, dass die SARAH-Domäne von MST2 ebenfalls dimerisiert (Abb. 41).
Abbildung 41: Alignment der Aminosäuresequenzen für die SARAH-Domänen von MST1 und MST2. Die Aminosäuren, die die Dimerisierung von MST1-SARAH vermitteln, und die entsprechenden Aminosäuren von MST2 sind grau unterlegt.

Die Aktivierung von MST1 wird sowohl in vivo als auch in vitro durch Bindung an NORE1 inhibiert (Praskova et al., Biochem J. 2004). MST1 verliert in vivo seine Fähigkeit zur Autophosphorylierung und Autoaktivierung, wenn es zusammen mit NORE1 fl, NORE1 fl (LKKF304 zu AAAA), NORE1-250-413, NORE1-250-413 (LKKF304 zu AAAA) koexprimiert wird (die Mutation LKKF304 zu AAAA führt zum Verlust der Fähigkeit von NORE1 RAS-GTP zu binden). Die Inhibierung der MST1-Autoaktivierung wird auch beobachtet, wenn ein Überschuss an rekombinantem FLAG-NORE1 in vitro zu rekombinantem MST1 gegeben wird (Praskova et al., Biochem J. 2004). Diese Ergebnisse deuten darauf hin, dass allein die Bindung von NORE1 an MST1 ausreicht, um dessen Fähigkeit zur Autophosphorylierung zu inhibieren, denn sowohl das NORE1-Konstrukt ohne die C1- und PR-Domäne als auch die NORE1-Konstrukte mit der LKKF304 zu AAAA-Mutation inhibieren die Autophosphorylierung von MST1.

Da es sich bei dem NORE1-MST1-Komplex um ein Heterodimer handelt, muss zwangsläufig vor der Heterodimerbildung eine Dissoziation der NORE1- und MST1-Homodimere stattfinden. Da die Aktivierung von MST1 über eine Transphosphorylierung an Thr183 (Praskova et al., Biochem J. 2004 und Glantschnig et al., JBC 2002) stattfindet und die Kinase-Domäne als Homodimer vorliegt (Abb. 42), kann MST1 nicht mehr aktiviert werden, wenn es mit NORE1 als Heterodimer vorliegt.

Es muss einschränkend erwähnt werden, dass noch nicht bekannt ist, ob die Kinase-Domäne von MST1 (nach Phosphorylierung an Thr^{183}) auch unter physiologischen Bedingungen als Homodimer vorliegt, sei es innerhalb von fl MST1 oder nach proteolytischer Entfernung des Fragments mit der autoinhibitorischen und der SARAH-Domäne durch Caspasen.

Da die Bindung von MST1 und RAS an NORE1 kompetitiver Natur zu sein scheint, ist es möglich, dass, wenn es in einer Zelle zu einer exzessiven Aktivierung von RAS kommt, RAS MST1 von NORE1 verdrängt, woraufhin MST1 nach Homodimerisierung und Transphosphorylierung Apoptose auslöst.

5.2 Sekundärstruktur der autoinhibitorischen Domäne

Der außergewöhnlich große hydrodynamische Radius der autoinhibitorischen Domäne kann nur dadurch erklärt werden, dass sie entweder unstrukturiert ist oder oligomerisiert oder eine

Abbildung 43: CD-Spektren der autoinhibitorischen Domäne und des Konstrukts mit der autoinhibitorischen und SARAH-Domäne. Die CD-Spektren wurden mit 10 µM Protein in 10 mM KH₂PO₄ (pH = 7,4) bei 20 °C aufgenommen. Die Abbildung enthält auch das CD-Spektrum von 10 mM KH₂PO₄ als Hintergrund.

Das CD-Spektrum der autoinhibitorischen Domäne ähnelt stärker dem von α-Synuklein, das unter physiologischen Bedingungen in vitro fast vollständig unstrukturiert vorliegt (Sode et al., Int. J. Biol. Sci. 2007) (Abb. 45).
Abbildung 45: CD-Spektren von WT-α-Synuklein (schwarz) und drei α-Synuklein-Seitenkettenmutanten (rot, grün und blau) (aus Sode et al., Int. J. Biol. Sci. 2007).

Das Konstrukt, das sowohl die autoinhibitorische als auch die SARAH-Domäne enthält, weist dagegen die für α-Helices typischen Minima der molaren Elliptizität bei den Wellenlängen ~208 und ~222nm auf (Abb. 43 und 44).

Es kann daher geschlussfolgert werden, dass die autoinhibitorische Domäne keine durch CD-Spektroskopie nachweisbaren Sekundärstrukturrelemente enthält und das Spektrum von MST1-330-487 allein durch den Beitrag der nachweislich α-helikalen SARAH-Domäne zustande kommt.

5.3 Faltungsenthalpien unterschiedlicher MST1-Konstrukte

Die autoinhibitorische Domäne von MST1 hat eine sehr kleine ΔH_{Falt} von -8 kcal/mol und zudem eine sehr kleine T_{M} von etwa 42 °C, die nicht scharf definiert ist (Abb. 28). Außerdem ist die Entfaltung der autoinhibitorischen Domäne im Gegensatz zu der der SARAH-Domäne nicht reversibel. Die SARAH-Domäne besitzt eine ΔH_{Falt} von -34 kcal/mol, obwohl ihre molekulare Masse nur 6,72 kDa beträgt. Damit beträgt der Betrag von ΔH_{Falt} der autoinhibitorischen Domäne weniger als ein Viertel desjenigen der SARAH-Domäne, obwohl
die SARAH-Domäne nur etwa halb so groß ist wie die autoinhibitorische Domäne. Die \(\Delta H_{\text{Falt}} \) des Konstrukts, das sowohl die SARAH- als auch die autoinhibitorische Domäne enthält, beträgt nur -46 kcal/mol und ist damit um nur 4 kcal/mol kleiner als die Summe der \(\Delta H_{\text{Falt}} \) der einzelnen Domänen.

In der Literatur werden \(\Delta H_{\text{Falt}} \) von Proteinen meist pro Aminosäurerest angegeben, wobei eine durchschnittliche molekulare Masse von 115 Da pro Aminosäure angenommen wird. Mit einer molekularen Masse von 11,841 ergibt sich für die autoinhibitorische Domäne eine \(\Delta H_{\text{Falt}} \) von -0,078 kcal/mol Aminosäurerest. Diese \(\Delta H_{\text{Falt}} \) ist verglichen mit den \(\Delta H_{\text{Falt}} \) von Myoglobin (-0,813 kcal/mol Aminosäurerest), Cytochrom c (-0,669 kcal/mol Aminosäurerest), Lysozym (-1,028 kcal/mol Aminosäurerest) und Ubiquitin (-0,956 kcal/mol Aminosäurerest) sehr gering (alle Angaben nach Privalov et al., Biophysical Chemistry 2007). Die autoinhibitorische Domäne zeigt zudem eine sehr geringe Temperatursensitivität, da sie nach Erhitzung auf 95 °C nicht aggregiert und in Lösung bleibt (Abb. 29).

Die sehr niedrige \(\Delta H_{\text{Falt}} \), die sehr kleine \(T_M \), die Irreversibilität der Entfaltung und die sehr geringe Temperatursensitivität sind zusammen ein Hinweis darauf, dass die autoinhibitorische Domäne vorwiegend unstrukturiert ist und keinen ausgedehnten hydrophoben Kern besitzt.

5.4 Der außergewöhnlich große hydrodynamische Radius der autoinhibitorische Domäne von MST1

Den Ergebnissen aus Größenausschlusschromatographie- und DLS-Experimenten nach zu urteilen hat die autoinhibitorische Domäne von MST1 eine außergewöhnlich große apparente molekulare Masse von 30,7 kDa und einen außergewöhnlich großen \(R_H \) von 3,08 nm, obwohl sie eine berechnete molekulare Masse von nur 11,84 kDa aufweist. Die hohe apparente molekulare Masse und der außergewöhnlich große \(R_H \) der autoinhibitorischen Domäne könnten theoretisch dadurch zustande kommen, dass die autoinhibitorische Domäne möglicherweise dimerisiert oder sogar trimerisiert. Bei Vernetzungsexperimenten mit EDC und DSG konnte eine Dimerisierung oder Trimerisierung der autoinhibitorischen Domäne jedoch nicht nachgewiesen werden. Wenn die autoinhibitorische Domäne homodimerisieren oder homotrimerisieren würde, müßte sie eine gefaltete und kompakte Struktur aufweisen, folglich Sekundärstrukturelemente wie \(\alpha \)-Helices und \(\beta \)-Sheets aufweisen und eine hohe
ΔH\text{Falt} besitzen. Die Ergebnisse der CD-Spektroskopie deuten jedoch daraufhin, dass die autoinhibitorische Domäne keine α-Helices und β-Sheets besitzt (Abb.43 und 44). Außerdem besitzt die autoinhibitorische Domäne mit -8 kcal/mol eine sehr geringe Faltungsenthälpie und eine sehr geringe Schmelztemperatur von 42 °C.

Der R\text{H} der autoinhibitorischen Domäne ist größer als der von RAS-1-166, obwohl dieses mit 18,853 kDa eine um 7 kDa größere molekulare Masse aufweist. Der Größenunterschied zwischen der autoinhibitorischen Domäne und RAS wird deutlicher, wenn deren hydrodynamische Volumina verglichen werden; RAS hat ein hydrodynamisches Volumen von 3,82 \times 10^{-20} \text{ cm}^3 und die autoinhibitorische Domäne dagegen 12,24 \times 10^{-20} \text{ cm}^3. Die autoinhibitorische Domäne hat also ein annähernd drei Mal größeres hydrodynamisches Volumen als RAS.

Die native Form von Cytochrom c (aus den Herzen von Pferden isoliert) hat mit 12,32 kDa eine vergleichbare Masse wie die autoinhibitorische Domäne von MST1, aber einen viel kleineren R\text{H} von nur 1,78 nm. Der R\text{H} der autoinhibitorischen Domäne ist interessanterweise vergleichbar mit dem unter stark denaturierenden Bedingungen ermittelten R\text{H} von Cytochrom c von 3,26 nm (Wilkins et al., Biochemistry 1999). Auch Lysozym hat mit 14,31 kDa eine vergleichbare Masse wie die autoinhibitorische Domäne. Die native Form von Lysozym hat ebenfalls einen wesentlich kleineren R\text{H} von nur 2,05 nm. Auch hier ist der R\text{H} der autoinhibitorischen Domäne eher vergleichbar mit dem unter stark denaturierenden Bedingungen ermittelten R\text{H} von Lysozym von 3,46 nm (Wilkins et al., Biochemistry 1999) (Abb. 46). Der R\text{H} der autoinhibitorischen Domäne ist sogar etwas größer als der R\text{H} der Carboanhydrase (2,5 nm) (mit Hydropro berechnet), obwohl die Carboanhydrase eine Masse von 29,53 kDa besitzt.

Der außergewöhnlich große R_H der autoinhibitorischen Domäne erklärt auch, warum das MST1-Homodimer und das NORE-MST1-Heterodimer bei der Größenausschlusschromatographie nicht, wie zu erwarten wäre, apparente molekulare Massen von 37,5 bzw. 43,7 kDa aufweisen, sondern 76 bzw. 63 kDa (Abb. 19). Der mittels DLS bestimmte R_H des MST1-Homodimers von 4,52 nm ist ähnlich dem R_H von 4,32 nm eines Models von einem MST1-Homodimer, bei dem die autoinhibitorische Domäne durch Carboanhydrase 2 simuliert wurde (das Model hat eine berechnete molekulare Masse von 71 kDa) (Abb. 25D). Das MST1-Konstrukt, das sowohl die SARAH- als auch die autoinhibitorische Domäne enthält, bildet offenbar ein Homodimer mit einem vergleichbaren hydrodynamischen Volumen wie ein Protein mit einer molekulare Masse von 76 kDa.
5.5 Anomale Mobilität der autoinhibitorischen Domäne von MST1 bei der SDS-PAGE

Wegen ihrer ungewöhnlichen Aminosäurezusammensetzung binden intrinsisch unstrukturierte Proteine weniger SDS und haben bei der SDS-PAGE eine 1,2-1,8-fach größere apparente molekulare Masse als ihre berechnete oder durch Massenspektrometrie bestimmte molekulare Masse (Tompa, Trends in Biochemical Sciences 2002).

Das Protein xXPA (aus *Xenopus laevis*) verhält sich wegen einer Glutamat-reichen Region (EEEEAEE) und zwei N- und C-terminal unstrukturierten Regionen bei der SDS-PAGE anomal (Iakoucheva et al., Protein Science 2001). Die apparente Masse von xXPA auf SDS-Gelen beträgt etwa 42 kDa, obwohl seine tatsächliche Masse nur 30,92 beträgt. Auch bei analytischen Gelfiltrationen zeigt xXPA eine anomale Mobilität, da es als ein Protein mit einer apparenten molekularen Masse von 92 kDa migriert.

Die autoinhibitorische Domäne zeigt bei der SDS-PAGE ebenfalls eine anomale Mobilität, da es auf SDS-Gelen als ein Protein mit einer apparenten Masse von etwa 16 kDa migriert, obwohl ihre berechnete Masse nur 11,84 kDa beträgt (Abb. 23B). Das Konstrukt mit der autoinhibitorischen und SARAH-Domäne zeigt auf SDS-Gelen ebenfalls eine anomale apparente Masse von etwa 23 kDa, obwohl dieses Konstrukt eine berechnete Masse von nur 18,75 kDa aufweist. Die anomale Mobilität beider Konstrukte könnte darin begründet sein, dass die autoinhibitorische Domäne zwei Glutamat-reiche Regionen (317EENSEEDE324 und 373EDEEEE378) aufweist und unstrukturiert ist.

Die autoinhibitorische Domäne und das Konstrukt mit der autoinhibitorischen und der SARAH-Domäne verhalten sich bei analytischen Gelfiltrationen, was ihre apparente molekulare Masse angeht, ähnlich wie xXPA. Die autoinhibitorische Domäne hat bei der Gelfiltration eine apparente Masse von 31,7 kDa und das Konstrukt mit der zusätzlichen SARAH-Domäne 76 kDa (das Konstrukt mit der autoinhibitorischen und SARAH-Domäne liegt als Homodimer vor und hat eine berechnete Masse von 37,5 kDa).
5.6 Die Aminosäurezusammensetzung der autoinhibitorischen Domäne von MST1

Intrinsisch unstrukturierte Proteine und Proteinregionen unterscheiden sich auch bezüglich ihrer Aminosäurezusammensetzung von gefalteten Proteinen insofern, als sie einen geringeren Anteil an Ordnung-fördernden Aminosäuren und einen höheren Anteil an Unordnung-fördernden Aminosäuren enthalten, und zudem eine hohe Nettoladung aufweisen (Williams et al., Pacific Symposium on Biocomputing 2001). Folglich enthalten unstrukturierte Proteine vergleichsweise wenige Aminosäuren, die gewöhnlich im hydrophoben Kern von Proteinen gefunden werden (also einen hohen Hydropathieindex aufweisen), und einen höheren Anteil an polaren und geladenen Aminosäuren, die gewöhnlich auf der Oberfläche von Proteinen gefunden werden (also einen niedrigen Hydropathieindex besitzen).

Die autoinhibitorische Domäne besitzt mit einem berechneten pI von 4,48 eine sehr hohe Nettoladung. Der Anteil von Ordnung-fördernden Aminosäuren beträgt in der autoinhibitorischen Domäne 23,5 % (nach Williams et al.) bzw. 32,3 % (nach Radivojac et al.) und derjenige der Unordnung-fördernden 53 % (nach Williams et al.) bzw. 55 % (nach Radivojac et al.).

Die autoinhibitorische Domäne enthält mit 71,6 % (davon 31,4 % geladene Aminosäuren) einen hohen Anteil an Aminosäuren mit einem negativen Hydropathieindex (R, K, N, D, Q, E, H, P, Y, W, S, T und G; angeordnet nach sinkender Hydropathie) (Kyte et al., J. Mol. Biol. 1982). Die niedrige Hydropathie bedingt, zusammen mit der hohen strukturellen Flexibilität, den außergewöhnlich großen R_H der autoinhibitorischen Domäne, da polare und geladene
Aminosäuren mit einem niedrigen Hydropathieindex besser hydratisiert sind als apolare Aminosäuren. Der hohe Anteil an Aminosäuren mit einem negativen Hydropathieindex und das Fehlen eines hydrophoben Kerns bedingen auch die bessere Löslichkeit von intrinsisch unstrukturierten Proteinen (Tompa, Trends in Biochemical Sciences 2002). Die autoinhibitorische Domäne besitzt eine außergewöhnlich gute Löslichkeit, da sie auch nach Erhitzen auf 95 °C für 10 Min. in Lösung bleibt und nicht präzipitiert (Abb. 29).

5.7 PEST-reiche Sequenzen und Caspasen

MST1 verfügt über zwei Caspase-Erkennungsmotive: DEMD326 (für Caspase-3) und TMTD349 (für Caspase-6 und -7). Beide Erkennungsmotive befinden sich am N-Terminus der autoinhibitorischen Domäne. MST1 wird aktiviert, indem, wie oben erwähnt, eine Autophosphorylierung an Thr183 erfolgt (Praskova et al, Biochem. J. 2004) und eine Caspase die Kinase-Domäne von der autoinhibitorischen trennt (Garaves et al, EMBO 1998). Die durch die hohe Flexibilität bedingte bessere Zugänglichkeit (im Vergleich zu einem gefalteten Proteinsegment) der autoinhibitorischen Domäne von MST1 könnte einen positiven Effekt auf die Effizienz der proteolytischen Entfernung der Kinase-Domäne vom Rest des Proteins während der Apoptose haben.

Die Analyse der Aminosäuresequenzen von 280 Caspase-Substraten mit dem Programm PESTfind ergab, dass sich 55,6 % der Erkennungsmotive für Caspasen innerhalb von PEST-
reichen Regionen befinden. Die Analyse der gleichen Aminosäuresequenzen mit Sekundärstrukturvoraussageprogrammen ergab, dass sich 14 % der Erkennungsmotive für Caspasen innerhalb von α-Helices, 8 % in β-Sheets und 78 % in Random-Coils befanden (Garay-Malpartida, Bioinformatics 2005), was die starke Korrelation zwischen PEST-reichen und unstrukturierten Proteinregionen unterstreicht.
6 Ausblick

Durch die Anpassung der vorhanden Strukturen (NMR-Struktur der SARAH-Domäne und Kristallstruktur der Kinase-Domäne) in die durch SANS oder SAXS bestimmten Umrisse von MST1 könnte die relative Orientierung der einzelnen Domänen zueinander näher charakterisiert werden. Dies könnte helfen, den molekularen Aktivierungsmechanismus von MST1 besser zu verstehen.

Die Kristallisationsbedingungen für die SARAH-Domänen von NORE1 und MST1 sollen so optimiert werden, dass eine Verbesserung der Auflösung der Elektronendichteverteilung erzielt werden kann. Durch die Auswertung der Datensätze über die Elektronendichteverteilung der Kristalle für die SARAH-Domänen von MST1 und NORE1 soll dann deren dreidimensionale Struktur bestimmt werden. Sinnvoll wäre in diesem Zusammenhang die Ermittlung von Bedingungen, unter denen das NORE1-MST1-Heterodimer kristallisiert, und die Bestimmung von dessen dreidimensionaler Struktur.
Zusammenfassung

MST1 ist hauptsächlich in die Regulation von Apoptose involviert, spielt aber auch eine wichtige Rolle bei der adaptiven Immunabwehr. Die zellbiologische Aktivität von MST1 wird hauptsächlich von Proteinen aus der RASS-Familie kontrolliert, wobei RASSF1 und NORE1 eine hervorragende Rolle spielen. NORE1 verfügt an seinem N-Terminus über eine SARAH-Domäne, die es befähigt, durch Heterooligomerbildung an MST1 zu binden. NORE1 bindet mit hoher Affinität auch an RAS. Da NORE1 sowohl an MST1 als auch an RAS bindet, existiert möglicherweise ein Regulationsmechanismus, bei dem die Aktivität von MST1 durch RAS über NORE1 kontrolliert wird. Wichtig für das Verständnis des Aktivierungsmechanismus von MST1 ist die Kenntnis der Komplexzusammensetzung von NORE1- und MST1- Homo- und Heterooligomeren. Wichtig ist außerdem die Klärung der Frage, ob NORE1, MST1 und RAS in der Lage sind zusammen einen Komplex zu bilden, oder, ob RAS und MST1 um die Bindung an NORE1 konkurrieren.

Es konnte mithilfe von Densitometrie- und Vernetzungsexperimenten gezeigt werden, dass die SARAH-Domänen von NORE1 und MST1 die Bildung sowohl von Homo- als auch von Heterodimeren erlauben, jedoch nicht von höheren Oligomeren.

Den Ergebnissen von Affinitätschromatographie-Experimenten nach zu urteilen, bilden NORE1, MST1 und RAS keinen stabilen Komplex; vielmehr verdrängt RAS MST1 von NORE1. Offenbar konkurrieren MST1 und RAS um die Bindung an NORE1, wobei RAS mit einer höheren Affinität an NORE1 zu binden scheint.

Das überraschendste Ergebnis dieser Arbeit war die Beobachtung, dass die autoinhibitorische Domäne von MST1 fast vollständig unstrukturiert vorliegt. Die CD-Spektren der autoinhibitorischen Domäne bei Temperaturen zwischen 20 und 70 °C weisen einen fast identischen Verlauf auf und ähneln den Spektren von Proteinen wie α-Synuklein, die nachweislich fast komplett unstrukturiert sind. DSC-Experimenten zufolge besitzt die autoinhibitorische Domäne mit -8 kcal/mol eine sehr niedrige Faltungsenthalpie und ist folglich kaum gefaltet. Außerdem ist die autoinhibitorische Domäne nicht temperatursensitiv, da sie auch dann in Lösung bleibt, wenn sie für 10 Min. auf 95 °C erhitzt wird. Gefaltete Proteine mit einem hydrophoben Kern denaturieren und präzipitieren gewöhnlich nach einer
solchen Hitzebehandlung. Die autoinhibitorische Domäne besitzt den Ergebnissen von DLS- und Größenausschlusschromatographie-Experimenten nach zu urteilen einen ungewöhnlich großen hydrodynamischen Radius bzw. ein ungewöhnlich großes Volumen.
8 Resümee

Das wichtigste und überraschendste Ergebnis dieser Arbeit war die Beobachtung, dass die autoinhibitorische Domäne von MST1, die immerhin über 100 Aminosäuren lang ist, intrinsisch unstrukturiert ist, ein außergewöhnlich großes Volumen besitzt und keinen hydrophoben Kern aufweist.

Das außergewöhnlich große Volumen der autoinhibitorischen Domänen hat viele Unstimmigkeiten früher Experimente aufgelöst; insbesondere, dass MST1 als Homodimer vorliegt und nicht, wie lange vermutet, als Homotetramer. Die fehlende Faltung der autoinhibitorischen Domänen erklärt vermutlich auch, warum alle Konstrukte, die die SARAH-Domäne und die autoinhibitorische Domäne (oder Teile von ihr) enthielten, nicht kristallisierten.

Da Caspasen bevorzugt intrinsisch unstrukturierte Proteinsegmente proteolysieren, und die Caspase-Schnittstellen von MST1 sich innerhalb der autoinhibitorischen Domäne befinden, könnte die fehlende Faltung der autoinhibitorischen Domäne wichtig für eine effiziente Aktivierung und Regulation von MST1 sein.

Ein anderes wichtiges Ergebnis war die Beobachtung, dass H-RAS und MST1 offenbar kompetitiv an NORE1 binden. Dies ist insofern überraschend, als dass beide Proteine an unterschiedliche Domänen von NORE1 binden. Vermutlich ist NORE1 so gefaltet, dass die Bindung von RAS an NORE1 die Bindung von MST1 sterisch behindert.

Wenn berücksichtigt wird, dass es sich bei den NORE1- und MST1-Homokomplexen und dem NORE1-MST1-Heterokomplex um Dimere handelt und die Bindung von RAS an
9 Anhang

9.1 Literaturverzeichnis

9.2 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorption</td>
</tr>
<tr>
<td>Å</td>
<td>Ångström</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APC</td>
<td>Anaphase promoting complex</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen-präsentierende Zelle</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumperoxosulfat</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>ATM</td>
<td>Ataxia teleangiectasia mutated</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>BAX</td>
<td>BCL-2-associated X protein</td>
</tr>
<tr>
<td>BCL-2</td>
<td>B cell leukemia/lymphoma 2</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serin albumin</td>
</tr>
</tbody>
</table>

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorption</td>
</tr>
<tr>
<td>Å</td>
<td>Ångström</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APC</td>
<td>Anaphase promoting complex</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen-präsentierende Zelle</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumperoxosulfat</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>ATM</td>
<td>Ataxia teleangiectasia mutated</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>BAX</td>
<td>BCL-2-associated X protein</td>
</tr>
<tr>
<td>BCL-2</td>
<td>B cell leukemia/lymphoma 2</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serin albumin</td>
</tr>
</tbody>
</table>

(Rindserum Albumin)

Colorectal cancer cell
<table>
<thead>
<tr>
<th>C-Terminus</th>
<th>Carboxyterminus</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>DAPI</td>
<td>4′-6-Diamidino-2-phenylindol</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylaminoethyl</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamische Lichtstreuung</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynukleosidtriphosphat</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double strand DNA</td>
</tr>
<tr>
<td>DSG</td>
<td>Disuccinimidylglutarat</td>
</tr>
<tr>
<td>DTT</td>
<td>1,4-Dithiothreitol</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>fl.</td>
<td>full length (volle Länge)</td>
</tr>
<tr>
<td>FLAG</td>
<td>ein Tag mit der Sequenz DYKDDDDK</td>
</tr>
<tr>
<td>FPLC</td>
<td>Fast protein liquid chromatography</td>
</tr>
<tr>
<td>FRET</td>
<td>Förster resonance energy transfer assays</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Enthalpie</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung</td>
</tr>
<tr>
<td>G₁</td>
<td>Gap 1</td>
</tr>
<tr>
<td>G₂</td>
<td>Gap 2</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase activating protein (GTPase aktivierendes Protein)</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Extinktion</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDC</td>
<td>1-Ethyl-3-(3- dimethyiamonopropyl) carbodiimidhydrochlorid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescing protein</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>et al.</td>
<td>et alia (und Co-Autoren)</td>
</tr>
<tr>
<td>EVH1</td>
<td>Enabled/VASP-Homologie 1</td>
</tr>
<tr>
<td>ε</td>
<td>Extinktionskoeffizient</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>GTPase</td>
<td>Guanosintriphosphatase</td>
</tr>
<tr>
<td>H2B</td>
<td>Histon-2-B</td>
</tr>
<tr>
<td>HEK293</td>
<td>Human Embryonic Kidney 293 cells,</td>
</tr>
<tr>
<td>HeLa</td>
<td>Henrietta Lacks</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>H-RAS</td>
<td>Harvey-RAS</td>
</tr>
<tr>
<td>HSP 70</td>
<td>Heat shock protein 70</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular adhesion molecule 1</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactosid</td>
</tr>
<tr>
<td>ITC</td>
<td>Isotherme Titrationskalorimetrie</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>K-RAS</td>
<td>Kirsten-RAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LB</td>
<td>Lysogeny broth</td>
</tr>
<tr>
<td>MWCO</td>
<td>Molecular weight cut-off</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>N</td>
<td>Anzahl</td>
</tr>
<tr>
<td>NES</td>
<td>Nukleares Exportsignal</td>
</tr>
<tr>
<td>NHS</td>
<td>N-Hydroxysuccinimid</td>
</tr>
<tr>
<td>NLS</td>
<td>Nukleares Lokalisationssignal</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NORE1</td>
<td>Novel RAS effector 1</td>
</tr>
<tr>
<td>N-RAS</td>
<td>Neuroblastoma RAS</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non-small cell lung carcinoma</td>
</tr>
<tr>
<td>N-Terminus</td>
<td>Aminoterminus</td>
</tr>
<tr>
<td>O</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamid-Gelelektrophorese</td>
</tr>
<tr>
<td>PAK</td>
<td>p21 aktivierter Proteinkinase</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction (Polymerasekettenreaktion)</td>
</tr>
<tr>
<td>PCS</td>
<td>Photonenkorrelationspektroskopie</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein database</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylenglycol</td>
</tr>
<tr>
<td>PH</td>
<td>Pleckstrin homology</td>
</tr>
<tr>
<td>PI3P</td>
<td>Phosphatidylinositol-3-Phosphat</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TNB</td>
<td>Tri-n-butylamin</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>SARAH</td>
<td>Salvador/RASSF/Hippo</td>
</tr>
<tr>
<td>SAV</td>
<td>Salvador</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SH2</td>
<td>Src homology 2 domain</td>
</tr>
<tr>
<td>SH3</td>
<td>Src homology 3 domain</td>
</tr>
<tr>
<td>shRNA</td>
<td>small/short hairpin RNA</td>
</tr>
<tr>
<td>S-Phase</td>
<td>Synthese-Phase</td>
</tr>
<tr>
<td>ssDNA</td>
<td>single strand DNA</td>
</tr>
<tr>
<td>T</td>
<td>Tris-Acetat-EDTA</td>
</tr>
<tr>
<td>TAE</td>
<td>Terrific Broth</td>
</tr>
<tr>
<td>TB</td>
<td>Tetrabutylammoniumbromid</td>
</tr>
<tr>
<td>TBA</td>
<td>Tetrabutylammoniumbromid</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylendiamin</td>
</tr>
<tr>
<td>TEV</td>
<td>Tobacco etch virus</td>
</tr>
<tr>
<td>TIRFM</td>
<td>Total Internal Reflection Fluorescence Microscopy</td>
</tr>
<tr>
<td>T_M</td>
<td>Schmelztemperatur</td>
</tr>
<tr>
<td>WW</td>
<td>Prolin-bindende Domäne</td>
</tr>
</tbody>
</table>
9.3 Abkürzungsverzeichnis für Aminosäuren

<table>
<thead>
<tr>
<th>Buchstaben</th>
<th>Abkürzung</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ala</td>
<td>Alanin</td>
</tr>
<tr>
<td>C</td>
<td>Cys</td>
<td>Cystein</td>
</tr>
<tr>
<td>D</td>
<td>Asp</td>
<td>Aspartat</td>
</tr>
<tr>
<td>E</td>
<td>Glu</td>
<td>Glutamat</td>
</tr>
<tr>
<td>F</td>
<td>Phe</td>
<td>Phenylalanin</td>
</tr>
<tr>
<td>G</td>
<td>Gly</td>
<td>Glycin</td>
</tr>
<tr>
<td>H</td>
<td>His</td>
<td>Histidin</td>
</tr>
<tr>
<td>I</td>
<td>Ile</td>
<td>Isoleucin</td>
</tr>
<tr>
<td>K</td>
<td>Lys</td>
<td>Lysin</td>
</tr>
<tr>
<td>L</td>
<td>Leu</td>
<td>Leucin</td>
</tr>
<tr>
<td>M</td>
<td>Met</td>
<td>Methionin</td>
</tr>
<tr>
<td>N</td>
<td>Asn</td>
<td>Asparagin</td>
</tr>
<tr>
<td>P</td>
<td>Pro</td>
<td>Prolin</td>
</tr>
<tr>
<td>Q</td>
<td>Gln</td>
<td>Glutamin</td>
</tr>
<tr>
<td>R</td>
<td>Arg</td>
<td>Arginin</td>
</tr>
<tr>
<td>S</td>
<td>Ser</td>
<td>Serin</td>
</tr>
<tr>
<td>T</td>
<td>Thr</td>
<td>Threonin</td>
</tr>
<tr>
<td>V</td>
<td>Val</td>
<td>Valin</td>
</tr>
<tr>
<td>W</td>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Y</td>
<td>Tyr</td>
<td>Tyrosin</td>
</tr>
</tbody>
</table>

9.4 Abkürzungsverzeichnis für Nukleotide

Abkürzungen für Nukleotide werden im Ein-Buchstaben-Code angegeben

<table>
<thead>
<tr>
<th>Buchstaben</th>
<th>Abkürzung</th>
<th>Nukleotid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenin</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Cytosin</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Guanin</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Thymin</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Uracil</td>
<td></td>
</tr>
</tbody>
</table>
9.5 Lebenslauf

Name, Vorname
Makbul, Cihan

Geburtsdatum
16. 10. 1977

Geburtsort
Osmaniye/Türkei

17.08.1996-20.05.1999
Abitur an der Schiller-Schule Bochum

01.10.1999-03.03.2005
Studium an der Ruhr-Universität Bochum und dem Max-Planck-Institut für Molekulare Physiologie Dortmund

14.07.05- Dezember 2009
Promotionsstudiengang Chemie an der Ruhr-Universität-Bochum

9.6 Danksagung

Zuallererst möchte ich mich bei Herrn Prof. Dr. Christian Herrmann dafür bedanken, dass er mich in seine Arbeitsgruppe aufnahm, und mir die Möglichkeit gab, an einem spannenden Forschungsprojekt zu arbeiten. Weiterhin danke ich ihm für seine stete fachliche, organisatorische und persönliche Unterstützung und für die Anfertigung des Erstgutachtens.

Herrn Prof. Dr. Raphael Stoll danke ich für Übernahme des Zweitgutachtens.

Herrn Prof. Dr. Eckhard Hofmann danke ich für seine Unterstützung, die Einführung in die Kristallographie und die vielen fruchtbaren Diskussionen. An dieser Stelle möchte ich mich auch bei seinen Mitarbeitern - Barbara, Falk, Eva, Petros, Tim, und Silke- für ihre freundliche Unterstützung bedanken.

Bei Frau Dr. Christine Bee möchte ich mich herzlich für viele fruchtbare Diskussionen, exzellente Tipps bei Problemen und das Korrekturlesen meiner Arbeit bedanken.

Dankbar bin ich auch Frau Diana Constantinescu für die Einführung in DSC und vielen erkenntnisreichen Diskussionen.
Mein Dank gilt auch Benjamin Stieglitz, Jens Tränkle, Agne Kotorunkiene und Simone Kunzelmann für die Einführung in viele biophysikalische Methoden.

Bedanken möchte ich mich auch bei Semra Ince für ihre Unterstützung im Labor.

Bei Tobias Vöpel möchte ich mich für seine Unterstützung bei der Lösung zahlreicher EDV-Probleme bedanken.

Ich danke auch Maik-Borris Lüdemann für seine wertvollen Tipps und Tricks bei DLS-Messungen.

Bedanken möchte ich mich auch bei Herrn Wolters und Frau Bendix für die zahlreichen MALDI-Spektren.
9.7 Erklärung

Hiermit erkläre ich, dass ich die hier vorgelegte Dissertations-Arbeit selbstständig und ohne unerlaubte fremde Hilfe ausgeführt und verfasst habe und dass die Arbeit in dieser oder ähnlicher Form noch bei keiner anderen Fakultät eingereicht worden ist.

Bochum, November 2009

Cihan Makbul