Table of Contents

1 Introduction

1.1 Part I: Cognitive Cartography – an Introduction 6
1.2 Part II: Spatial Distortions in Cognitive Representations 9
1.3 Part III: Chunking Linear Elements 16
1.4 Part IV: The Objectives and Organisation of this Thesis 18

2 Methods – a General Introduction

2.1 Measures of Spatial Memory Performance 22
2.2 Participants 25
2.3 Materials 25
2.4 Procedure 32

3 Empirical Studies

3.1 Study 1: Grids in Different Topographic Maps Increase Object-Location Memory (OLM) 37
 3.1.1 Methods 38
 3.1.1.1 Participants 38
 3.1.1.2 Materials 38
 3.1.1.3 Procedure 43
 3.1.1.4 Statistics 44
 3.1.2 Results 45
 3.1.3 Discussion 48
 3.1.4 Limitations 52
 3.1.5 Summary and Future Directions 53
3.2 Study 2: A Lower Opacity of Grid Crosses Has No Impact on OLM 54
 3.2.1 Methods 55
 3.2.1.1 Participants 55
 3.2.1.2 Materials 56
 3.2.1.3 Procedure 61
 3.2.1.4 Statistics 61
 3.2.2 Results 62
 3.2.3 Discussion 63
3.2.4 Summary and Future Directions 65

3.3 Study 3: Grid Line Separation Influences OLM 67

3.3.1 Methods 67
 3.3.1.1 Participants 68
 3.3.1.2 Materials 68
 3.3.1.3 Procedure 73
 3.3.1.4 Statistics 73

3.3.2 Results 74

3.3.3 Discussion 78

3.3.4 Summary and Future Directions 80

3.4 Study 4: True-3D Accentuation of Grids Improves OLM 82

3.4.1 Principles of Imaging in True-3D 84

3.4.2 Methods 87
 3.4.2.1 Participants 87
 3.4.2.2 Materials 87
 3.4.2.3 Procedure 91
 3.4.2.4 Statistics 91

3.4.3 Results 92

3.4.4 Discussion 93

3.4.5 Summary and Future Directions 95

3.5 Study 5: Grid Line Colour Influences OLM 97

3.5.1 Methods 99
 3.5.1.1 Participants 99
 3.5.1.2 Materials 99
 3.5.1.3 Procedure 105
 3.5.1.4 Statistics 105

3.5.2 Results 106

3.5.3 Discussion 108

3.5.4 Summary and Future Directions 111

4 General Discussion 112

4.1 Summary and Linked Discussion of Empirical Findings 112
 4.1.1 Findings on Grid Design in Topographic Maps 112
 4.1.2 The Relevance of the Topographic Base Map 119